Visual Servoing Platform version 3.6.0
Loading...
Searching...
No Matches
servoSimuCylinder2DCamVelocityDisplaySecondaryTask.cpp

Simulation of a 2D visual servoing:

Simulation of a 2D visual servoing:Simulation of a 2D visual servoing:

This example illustrates in one hand a classical visual servoing with a cylinder. And in the other hand it illustrates the behaviour of the robot when adding a secondary task.

/****************************************************************************
*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2023 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See https://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* Simulation of a 2D visual servoing on a cylinder.
*
*****************************************************************************/
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <visp3/core/vpCameraParameters.h>
#include <visp3/core/vpCylinder.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpImage.h>
#include <visp3/core/vpMath.h>
#include <visp3/gui/vpDisplayD3D.h>
#include <visp3/gui/vpDisplayGDI.h>
#include <visp3/gui/vpDisplayGTK.h>
#include <visp3/gui/vpDisplayOpenCV.h>
#include <visp3/gui/vpDisplayX.h>
#include <visp3/gui/vpProjectionDisplay.h>
#include <visp3/io/vpParseArgv.h>
#include <visp3/robot/vpSimulatorCamera.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpFeatureLine.h>
#include <visp3/vs/vpServo.h>
#include <visp3/vs/vpServoDisplay.h>
// List of allowed command line options
#define GETOPTARGS "cdho"
void usage(const char *name, const char *badparam);
bool getOptions(int argc, const char **argv, bool &click_allowed, bool &display);
void usage(const char *name, const char *badparam)
{
fprintf(stdout, "\n\
Simulation of a 2D visual servoing on a cylinder:\n\
- eye-in-hand control law,\n\
- velocity computed in the camera frame,\n\
- display the camera view.\n\
\n\
SYNOPSIS\n\
%s [-c] [-d] [-o] [-h]\n",
name);
fprintf(stdout, "\n\
OPTIONS: Default\n\
\n\
-c\n\
Disable the mouse click. Useful to automate the \n\
execution of this program without human intervention.\n\
\n\
-d \n\
Turn off the display.\n\
\n\
-o \n\
Disable new projection operator usage for secondary task.\n\
\n\
-h\n\
Print the help.\n");
if (badparam)
fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
}
bool getOptions(int argc, const char **argv, bool &click_allowed, bool &display, bool &new_proj_operator)
{
const char *optarg_;
int c;
while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
switch (c) {
case 'c':
click_allowed = false;
break;
case 'd':
display = false;
break;
case 'o':
new_proj_operator = false;
break;
case 'h':
usage(argv[0], NULL);
return false;
default:
usage(argv[0], optarg_);
return false;
}
}
if ((c == 1) || (c == -1)) {
// standalone param or error
usage(argv[0], NULL);
std::cerr << "ERROR: " << std::endl;
std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
return false;
}
return true;
}
int main(int argc, const char **argv)
{
#if (defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
try {
bool opt_display = true;
bool opt_click_allowed = true;
bool opt_new_proj_operator = true;
// Read the command line options
if (getOptions(argc, argv, opt_click_allowed, opt_display, opt_new_proj_operator) == false) {
return EXIT_FAILURE;
}
vpImage<unsigned char> Iint(512, 512, 0);
vpImage<unsigned char> Iext(512, 512, 0);
// We open a window if a display is available
#ifdef VISP_HAVE_DISPLAY
#if defined(VISP_HAVE_X11)
vpDisplayX displayInt;
vpDisplayX displayExt;
#elif defined(VISP_HAVE_GTK)
vpDisplayGTK displayInt;
vpDisplayGTK displayExt;
#elif defined(VISP_HAVE_GDI)
vpDisplayGDI displayInt;
vpDisplayGDI displayExt;
#elif defined(HAVE_OPENCV_HIGHGUI)
vpDisplayOpenCV displayInt;
vpDisplayOpenCV displayExt;
#elif defined(VISP_HAVE_D3D9)
vpDisplayD3D displayInt;
vpDisplayD3D displayExt;
#endif
#endif
if (opt_display) {
#ifdef VISP_HAVE_DISPLAY
// Display size is automatically defined by the image (Iint) and
// (Iext) size
displayInt.init(Iint, 100, 100, "Internal view");
displayExt.init(Iext, 130 + static_cast<int>(Iint.getWidth()), 100, "External view");
#endif
// Display the image
// The image class has a member that specify a pointer toward
// the display that has been initialized in the display declaration
// therefore is is no longer necessary to make a reference to the
// display variable.
}
#ifdef VISP_HAVE_DISPLAY
vpProjectionDisplay externalview;
#endif
// Set the camera parameters
double px, py;
px = py = 600;
double u0, v0;
u0 = v0 = 256;
vpCameraParameters cam(px, py, u0, v0);
vpServo task;
// sets the initial camera location
vpHomogeneousMatrix cMo(-0.2, 0.1, 2, vpMath::rad(5), vpMath::rad(5), vpMath::rad(20));
robot.getPosition(wMc);
wMo = wMc * cMo; // Compute the position of the object in the world frame
// sets the final camera location (for simulation purpose)
// sets the cylinder coordinates in the world frame
vpCylinder cylinder(0, 1, 0, // direction
0, 0, 0, // point of the axis
0.1); // radius
#ifdef VISP_HAVE_DISPLAY
externalview.insert(cylinder);
#endif
// sets the desired position of the visual feature
cylinder.track(cMod);
cylinder.print();
// Build the desired line features thanks to the cylinder and especially
// its paramaters in the image frame
for (unsigned int i = 0; i < 2; i++)
vpFeatureBuilder::create(ld[i], cylinder, i);
// computes the cylinder coordinates in the camera frame and its 2D
// coordinates sets the current position of the visual feature
cylinder.track(cMo);
cylinder.print();
// Build the current line features thanks to the cylinder and especially
// its paramaters in the image frame
for (unsigned int i = 0; i < 2; i++) {
vpFeatureBuilder::create(l[i], cylinder, i);
l[i].print();
}
// define the task
// - we want an eye-in-hand control law
// - robot is controlled in the camera frame
// it can also be interesting to test these possibilities
// task.setInteractionMatrixType(vpServo::CURRENT,vpServo::PSEUDO_INVERSE)
// ; task.setInteractionMatrixType(vpServo::MEAN, vpServo::PSEUDO_INVERSE)
// ; task.setInteractionMatrixType(vpServo::CURRENT,
// vpServo::PSEUDO_INVERSE) ;
// task.setInteractionMatrixType(vpServo::DESIRED, vpServo::TRANSPOSE) ;
// task.setInteractionMatrixType(vpServo::CURRENT, vpServo::TRANSPOSE) ;
// we want to see 2 lines on 2 lines
task.addFeature(l[0], ld[0]);
task.addFeature(l[1], ld[1]);
// Set the point of view of the external view
vpHomogeneousMatrix cextMo(0, 0, 6, vpMath::rad(40), vpMath::rad(10), vpMath::rad(60));
// Display the initial scene
vpServoDisplay::display(task, cam, Iint);
#ifdef VISP_HAVE_DISPLAY
externalview.display(Iext, cextMo, cMo, cam, vpColor::red);
#endif
// Display task information
task.print();
if (opt_display && opt_click_allowed) {
vpDisplay::displayText(Iint, 20, 20, "Click to start visual servo...", vpColor::white);
}
// set the gain
task.setLambda(1);
// Display task information
task.print();
unsigned int iter = 0;
bool stop = false;
bool start_secondary_task = false;
while (!stop) {
std::cout << "---------------------------------------------" << iter++ << std::endl;
// get the robot position
robot.getPosition(wMc);
// Compute the position of the object frame in the camera frame
cMo = wMc.inverse() * wMo;
// new line position
// retrieve x,y and Z of the vpLine structure
// Compute the parameters of the cylinder in the camera frame and in the
// image frame
cylinder.track(cMo);
// Build the current line features thanks to the cylinder and especially
// its paramaters in the image frame
for (unsigned int i = 0; i < 2; i++) {
vpFeatureBuilder::create(l[i], cylinder, i);
}
// Display the current scene
if (opt_display) {
vpServoDisplay::display(task, cam, Iint);
#ifdef VISP_HAVE_DISPLAY
externalview.display(Iext, cextMo, cMo, cam, vpColor::red);
#endif
}
// compute the control law
// Wait primary task convergence before considering secondary task
if (task.getError().sumSquare() < 1e-6) {
start_secondary_task = true;
}
if (start_secondary_task) {
// In this example the secondary task is cut in four
// steps. The first one consists in imposing a movement of the robot along
// the x axis of the object frame with a velocity of 0.5. The second one
// consists in imposing a movement of the robot along the y axis of the
// object frame with a velocity of 0.5. The third one consists in imposing a
// movement of the robot along the x axis of the object frame with a
// velocity of -0.5. The last one consists in imposing a movement of the
// robot along the y axis of the object frame with a velocity of -0.5.
// Each steps is made during 200 iterations.
vpColVector e1(6);
vpColVector e2(6);
vpColVector proj_e1;
vpColVector proj_e2;
static unsigned int iter_sec = 0;
double rapport = 0;
double vitesse = 0.5;
unsigned int tempo = 800;
if (iter_sec > tempo) {
stop = true;
}
if (iter_sec % tempo < 200) {
e2 = 0;
e1[0] = fabs(vitesse);
proj_e1 = task.secondaryTask(e1, opt_new_proj_operator);
rapport = vitesse / proj_e1[0];
proj_e1 *= rapport;
v += proj_e1;
}
if (iter_sec % tempo < 400 && iter_sec % tempo >= 200) {
e1 = 0;
e2[1] = fabs(vitesse);
proj_e2 = task.secondaryTask(e2, opt_new_proj_operator);
rapport = vitesse / proj_e2[1];
proj_e2 *= rapport;
v += proj_e2;
}
if (iter_sec % tempo < 600 && iter_sec % tempo >= 400) {
e2 = 0;
e1[0] = -fabs(vitesse);
proj_e1 = task.secondaryTask(e1, opt_new_proj_operator);
rapport = -vitesse / proj_e1[0];
proj_e1 *= rapport;
v += proj_e1;
}
if (iter_sec % tempo < 800 && iter_sec % tempo >= 600) {
e1 = 0;
e2[1] = -fabs(vitesse);
proj_e2 = task.secondaryTask(e2, opt_new_proj_operator);
rapport = -vitesse / proj_e2[1];
proj_e2 *= rapport;
v += proj_e2;
}
if (opt_display && opt_click_allowed) {
std::stringstream ss;
ss << std::string("New projection operator: ") +
(opt_new_proj_operator ? std::string("yes (use option -o to use old one)") : std::string("no"));
vpDisplay::displayText(Iint, 20, 20, "Secondary task enabled: yes", vpColor::white);
vpDisplay::displayText(Iint, 40, 20, ss.str(), vpColor::white);
}
iter_sec++;
} else {
if (opt_display && opt_click_allowed) {
vpDisplay::displayText(Iint, 20, 20, "Secondary task: no", vpColor::white);
}
}
// send the camera velocity to the controller
std::cout << "|| s - s* || = " << (task.getError()).sumSquare() << std::endl;
if (opt_display) {
vpDisplay::displayText(Iint, 60, 20, "Click to stop visual servo...", vpColor::white);
if (vpDisplay::getClick(Iint, false)) {
stop = true;
}
}
iter++;
}
if (opt_display && opt_click_allowed) {
vpServoDisplay::display(task, cam, Iint);
vpDisplay::displayText(Iint, 20, 20, "Click to quit...", vpColor::white);
}
// Display task information
task.print();
return EXIT_SUCCESS;
} catch (const vpException &e) {
std::cout << "Catch a ViSP exception: " << e << std::endl;
return EXIT_FAILURE;
}
#else
(void)argc;
(void)argv;
std::cout << "Cannot run this example: install Lapack, Eigen3 or OpenCV" << std::endl;
return EXIT_SUCCESS;
#endif
}
Generic class defining intrinsic camera parameters.
Implementation of column vector and the associated operations.
double sumSquare() const
static const vpColor white
Definition vpColor.h:206
static const vpColor red
Definition vpColor.h:211
Class that defines a 3D cylinder in the object frame and allows forward projection of a 3D cylinder i...
Definition vpCylinder.h:98
Display for windows using Direct3D 3rd party. Thus to enable this class Direct3D should be installed....
Display for windows using GDI (available on any windows 32 platform).
The vpDisplayGTK allows to display image using the GTK 3rd party library. Thus to enable this class G...
The vpDisplayOpenCV allows to display image using the OpenCV library. Thus to enable this class OpenC...
Use the X11 console to display images on unix-like OS. Thus to enable this class X11 should be instal...
Definition vpDisplayX.h:132
void init(vpImage< unsigned char > &I, int win_x=-1, int win_y=-1, const std::string &win_title="")
static bool getClick(const vpImage< unsigned char > &I, bool blocking=true)
static void display(const vpImage< unsigned char > &I)
static void flush(const vpImage< unsigned char > &I)
static void displayText(const vpImage< unsigned char > &I, const vpImagePoint &ip, const std::string &s, const vpColor &color)
error that can be emitted by ViSP classes.
Definition vpException.h:59
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
Class that defines a 2D line visual feature which is composed by two parameters that are and ,...
void print(unsigned int select=FEATURE_ALL) const
Implementation of an homogeneous matrix and operations on such kind of matrices.
vpHomogeneousMatrix inverse() const
Definition of the vpImage class member functions.
Definition vpImage.h:135
static double rad(double deg)
Definition vpMath.h:116
static bool parse(int *argcPtr, const char **argv, vpArgvInfo *argTable, int flags)
interface with the image for feature display
void display(vpImage< unsigned char > &I, const vpHomogeneousMatrix &cextMo, const vpHomogeneousMatrix &cMo, const vpCameraParameters &cam, const vpColor &color, const bool &displayTraj=false, unsigned int thickness=1)
void insert(vpForwardProjection &fp)
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel)
@ CAMERA_FRAME
Definition vpRobot.h:80
static void display(const vpServo &s, const vpCameraParameters &cam, const vpImage< unsigned char > &I, vpColor currentColor=vpColor::green, vpColor desiredColor=vpColor::red, unsigned int thickness=1)
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition vpServo.cpp:564
@ EYEINHAND_CAMERA
Definition vpServo.h:151
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition vpServo.cpp:299
void setLambda(double c)
Definition vpServo.h:403
vpColVector secondaryTask(const vpColVector &de2dt, const bool &useLargeProjectionOperator=false)
Definition vpServo.cpp:1454
void setServo(const vpServoType &servo_type)
Definition vpServo.cpp:210
vpColVector getError() const
Definition vpServo.h:276
@ PSEUDO_INVERSE
Definition vpServo.h:199
vpColVector computeControlLaw()
Definition vpServo.cpp:930
@ DESIRED
Definition vpServo.h:183
void addFeature(vpBasicFeature &s, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition vpServo.cpp:487
Class that defines the simplest robot: a free flying camera.