
The Mkpattern program

Javier A. Múgica de Rivera

Version 1.2, July 22, 2008

Index

1. Introduction 1

2. How to use it 2

3. Changing the name of the output file 2

4. Defining letter sets 3

5. Other definitions 3

Encoding substitutions

\letters

Giving names to templates

6. The pseudopatterns 5

7. Templates 5

8. Exceptions 6

9. Comments, blanks and arbitrary output 6

10. Input files 8

11. User defined macros 8

12. Tracing and the log file 10

1. Introduction

There have been in the past people who wrote scripts for the generation of
hyphenation patterns. They either used a language different from TEX, wrote
a program specific for the needs of their language, or they didn’t distribute
it (there was none at Ctan at the time of writing this paper).

The mkpattern program is just the file mkpatter.tex. It is a general
purpose pattern generating program. It allows the user to define letter sets
and to write the patterns in a template-like manner, with the several options
described below.

1



2. How to use it

You should create a generating file to be processed with TEX that at some
point inputs mkpatter.tex. The program was created with occasion of the
need to write the Galician patterns, so the file mkpattern-exmpl.tex, (almost)
the source for version 2.1 of those patterns, is a quite complete example of a
generating file.

The order \input mkpatter.tex need not be at the very first line, since
you may define macros before that point. The general structure of the gen-
erating file is:

\input mkpatter.tex

〈optional change of the output file name〉
\begin{code}

〈definition of user macros〉
\end{code}

〈definition of letter sets〉
〈other definitions〉
\begin{pseudopatterns}

〈pseudopatterns〉
\end{pseudopatterns}

\end{}

Once this file is written it has to be processed under INITEX —e.g., by
typing initex 〈filename〉 on the command line— (it will also work under
PlainTEX or LATEX). If no other name is given (see the next section), a file
with the same name but extension .pat will be created. This is the patterns
file, and has the following structure:

〈catcode settings〉
{

〈setting of active characters〉
\patterns{

〈patterns〉
}

}

〈patterns〉 consist only of patterns and comments, provided the generating
file is correct.

3. Changing the name of the output file

The file to be written can be given a name different form the default one.
Just write

\filename{〈filename〉}

2



before any write action is performed —simply write it just after \input

mkpatter.

4. Defining letter sets

The 〈definition of letter sets〉 is a set of instructions with this syntax:

&〈set name〉={〈list of characters〉}

For example, &V={a e i o u}. The 〈set name〉 may contain, excluded
numbers, braces, ampersands and equal signs, almost any character. The 〈list
of characters〉 is a space separated list of usually, but not necessarily, single
characters, as well as previously defined sets of characters, as in the following
example:

&V={a e i o u}

&V+={&V h}

&Va={á é ı́ ó ú}

&Vall={&V &Va}

&Vall+={&Vall h}

5. Other definitions

〈other definitions〉 is three kinds of definitions, two of which are character
related. One is the command

\encodingsubstitutions

It takes two arguments, each one being a space separated list of characters.
The first includes the characters to be replaced, and the second the corre-
sponding replacements. For example, the file mkpattern-exmpl.tex declares
the following encoding substitutions:

\encodingsubstitutions{á é ı́ ó ú ~n ü ı̈}{^^e1 ^^e9 ^^ed ^^f3 ^^fa ^^f1 ^^fc ^^ef}

The patterns are specific for a particular font encoding, but the text editor
you are using may follow a different encoding. For example, the character á
is in position E1 in the T1 encoding, but it may be represented by a different
number by your text editor. Thus, whenever you write a pattern that contains
á, and you see an á in your text editor, you are not writing the pattern you
intended for the T1 encoding. Suppose á is stored as E7 by your text editor.
That position is ç in the T1 encoding, so, even if you see an á, you are writing
a pattern containing ç instead.

In order to achieve the correct results, all the á’s that you wrote have to
be replaced by T1’s á, i.e., character E1, which may be whatever in your text

3



editor encoding. This can be done either at the time of writing the patterns,
or by means of active characters at the time INITEX shall read them. The
program mkpattern takes this latter approach. Suppose that the slot E1 (á in
T1) is interpreted by your text editor as ø, then the above declaration will
result in a set of definitions written in the patterns file, before the patterns,
the first of which will look like

\catcode‘\á=13 \edefá{\string ø}

This will cause INITEX to replace each occurrence of your text editor’s á
with your text editor’s ø, i.e., T1’s á. These definitions are written inside a
group, so that they remain local.

If the character to be replaced is the same than the replacement charac-
ter, then making it active is superfluous, and mkpattern will not write the
definitions to the file. The machine where mkpattern-exmpl.tex was written
happened to represent all the needed letters above position 128 in the same
places as the T1 encoding, so if you process that file no definition will be
generated.

You may wonder why mkpattern writes \edefá{\string ø} and not sim-
ply \defá{ø}. The reason is that the set of characters to be replaced and the
set of replacement characters may have nonempty intersection, which renders
the later approach invalid.

The other character related command of 〈other definitions〉 is \letters,
that takes as argument a space separated list of characters. The catcode of
these characters will be made equal to 11 in the patterns file. You write the
characters normally with your text editor encoding; mkpattern will replace
them if necessary.

Successive occurrences of \encodingreplacements and \letters are
added to previous ones.

The relative order of encoding replacement declarations, letter declara-
tions and letter set definitions is free, because mkpattern simply stores the
information necessary when processing those commands, and it does not write
anything to the patterns file till it sees the beginning of the patterns.

Finally, the other predefined command is \templatedef, an example of
the use of which is \templatedef{prefixos}{#1&{V}2}, and later in the
pseudopatterns you could write

\begin{prefixos}

〈#-parts〉
\end{prefixos}

It is selfexplanatory once you know about templates, which is explained
below.

4



6. The pseudopatterns

The pseudopatterns are the bulk of the generating file. There you may write
bare patterns or “patterns for the generation of patterns”, thus the name
pseudopatterns. These are patterns where one or more letters have been
replaced by letter sets, and the program writes a pattern for each letter of
the set. Thus, for example, the pseudopattern

&{Vall}1,

with the set Vall defined as above, would be replaced by the ten patterns
a1, . . ., ú1; and the input &{Vall}2&{Vall+} would write to the patterns file
a pattern matrix starting at a2a and ending at ú2h. If the name of the letter
set consists of a single character you may omit the braces.

If a single pattern is written it will be transparently passed to the patterns
file. Indeed, any text that does not deserve any special treatment is directly
output to the patterns file. Any such text as well as pseudopatterns are
words . Words must be preceded and followed by one or more spaces or end
of lines. Remember this when you write control sequences or comments (do
not append them directly to a word).

7. Templates

Some times you may find that the synthesis provided by letter sets is not
enough, as you may need to write several pseudopatterns which share a com-
mon structure. You may then write a template, in a way similar to the
alignments of TEX. The syntax is:

\template{〈pre-text〉#〈post-text〉}
〈#-parts〉
\end{template}

For example, the file mkpattern-exmpl.tex defines the following template
for prefixes:

\template{#1&{V}2} %Prefixos

〈#-parts〉
\end{template}

In this case the 〈pre-part〉 is empty. The 〈#-parts〉 is any text that may
also appear outside the template scope. The program prepends and appends
the 〈pre-part〉 and 〈post-part〉 to any word, and then it reads the resulting
string as if it had been there from the beginning.

Some lines below in the same file the template \template{co2# \newline}

is defined. This example illustrates the fact that the 〈pre-text〉 and the 〈post-
text〉may contain spaces as well as control sequences. Spaces will be respected
whenever they don’t follow a control sequence.

5



Templates cannot be nested. (They actually can, but the effect is not to
apply both, but to apply the innermost).

8. Exceptions

It is very likely that a pseudopattern or template applies to all but one or a
few patterns. Such exceptions can be specified prior to their generation with
the command exceptions:

\exceptions{〈exceptions〉}{〈replacements〉}

〈exceptions〉 is a space separated list of exceptions. 〈replacements〉 may be
either empty or a comma separated list of replacements. This command may
appear more than once; it simply accumulates exceptions.

If 〈replacements〉 is empty mkpattern will generate for each pattern in
〈exceptions〉 a “hole” of equal size than the removed pattern, so that the
output remains nicely formatted and the exception can be spotted at the
first sight. Note that empty means exactly that, so a space is not considered
empty. If it is not empty it must include exactly n−1 commas (not hidden by
braces), where n is the number of patterns in 〈exceptions〉. The replacement
text for each exception is copied verbatim to the patterns file, without further
processing. This has some limitations, as is for instance that you cannot
replace a particular pattern with a pseudopattern. Note, however, that you
may still replace one pattern with two or more patterns, and that one of those
patterns may be the original pattern (there is a case of this in mkpattern-
exmpl.tex).

Each pattern written to the patterns file is followed by a space, and it is
so for the replacement text, so even if 〈replacements〉 includes only commas
at least a space will be written in the place of the missing pattern. If there
is just one pattern to be replaced the least you can get is two spaces, for in
that case the replacement {} is interpreted as explained above. If you really
want the replacement to be as short as possible, then write a faked pattern:

\exceptions{a2a fff}{,}

9. Comments, blanks and arbitrary output

mkpattern has a command that allows you to place any text (any balanced
text) in the output file:

\put{〈balanced text〉}

The most frequent elements that need to be written, and that cannot
be written by simply placing them in the generating file, are comments and
empty lines. mkpattern treats the end of a line and empty lines as spaces, so

6



the only way to insert an end of line in the patterns file is with the command
\newline (you can include end(s) of line in the argument to \put, but it will
output the character 13, which may or may not be the end of line for your
OS). You may occasionally need to write two \newline instead of one. As
it has already been shown, this command may appear in the definition of a
template.

Since July 2008, empty lines within patterns are repaced by lines contain-
ing just a %. Previously, the problem of empty lines was avoided enclosing
the patterns in a group and making the catcode of end-of-line equal to that
of space. If you want the old behavour, just write \oldnewlines somewhere
before the pseudopatterns.

Comments may be output with \put, but there are other possibilities.
mkpattern has three states regarding the treatment of comments:

\nocomments \halfcomments \keepcomments

\nocomments makes mkpattern ignore all comments (by simply doing
nothig) except those inside \put. \halfcomments is necessary if you want
comments to appear in the arguments to functions other than \put. There
are actually two cases. The one is inside the definition of a template, and
the other in the replacements of \exception. While the former is unlikely to
be ever needed, the later can turn to be useful. Moreover, in this latter case
\put does not work, since the replacement is copied verbatim. One reason
you may need it is that the exception is the last pattern of its line, in which
case a hole will not be perceptible. You may then write

\exceptions{z1z}{%%%}

to point out the absence of the pattern. You may also want it in order to
emphasise an exception. Thus, a line of mkpattern-exmpl.tex could have been
written in this manner:

\exceptions{.de3s2esper}{.de3s2esper de4s3esperanz %Note! Exception}

The comments inside the replacement of an exception can only contain com-
mas if they are hidden by braces, but the braces will also appear in the
output.

\keepcomments, in addition to the behaviour of \halfcomments, writes
to the patterns file any comment that is read in the generating file. Each com-
ment is written on a line by its own, which is usually the desired behaviour.
If you want the comment to appear after some text in the line use \put.

Before the pseudopatterns start, comments can only be placed in the
patterns file with \put. You may also write \newline’s there.

7



10. Input files

In order to input a file you need to write \mkinput{〈filename〉}. The file
must include the \endinput command.

Currently, outside the pseudopatterns a common \input will work, but
you’d better not rely on that, for it may change in the future while \mkinput

will always work.

11. User defined macros

It is obvious that mkpattern makes substantial changes to the catcodes. In
this respect the program is quite radical, which makes sense if you think that
the main task of TEX is usually to output pages or read macro definitions,
while the mkpattern program processes a file with the purpose of writing
another text file. It has to catch every character of the input file, so that
instead of being added to a box to be eventually typeset it is added to the
material to be eventually written to the patterns file, after prior processing if
necessary.

All these is done by means a macro named \lee. It is triggered by
\begin{pseudopatterns} and does not stop to act till the end of the in-
put, which is signalled by \end{}. When the command \lee sees another
command in front of it, it executes that command, thus yielding temporarily
the control to that command. Every command designed in mkpatter.tex and
liable to appear inside pseudopatterns, places a \lee after it has completely
expanded, restoring the control to the main reading flow of the program. In
the like manner, every macro designed by the user should place the control
sequence \lee, or any other that does that, before any text, lest the following
text goes to the dvi file. Thus, the following definitions are valid:

\def\foo{\newline c2c} \def\twolines{\newline\newline}

\def\foo{\lee c2c} \def\foo{\exceptions{1h}{}}

\def\foo{\show\a\lee}

But the following ones are not

\def\foo{c2c \newline} \def\foo{\show\a}

Before pseudopatterns, \lee is equal to \relax, so it makes no harm.
Since the program “destroys” the catcode settings, macros have to be

defined in the following manner:

\begin{code}

〈user definitions〉
\end{code}

8



or before the program is read. The latter is not possible if the file is processed
with INITEX. The code environment does not open a new group level, so the
scope of macros defined there is the enclosing group.

In addition, some usual conventions regarding registers are changed.
Among the allocation routines only \newcount, \newtoks, \newread and
\newwrite are available. Also count registers 0 to 9, usually reserved for
page numbering, are available for scratch use. The allocations have to take
place after the program file is read. This doesn’t disable the use of these to be
allocated registers when defining macros prior to the reading of the program,
provided that they never get expanded at that time.

There is another environment for defining macros:

\begin{patternscode}

〈user definitions〉
\end{patternscode}

It sets the catcode equal to those that will be in force inside the pseu-
dopatterns. This concerns in particular # and &. The macro parameter
character inside that environment is $. The above definition of prefixes,
\templatedef{prefixos}{#1&{V}2}, can be performed by hand as

\begin{patternscode}

\def\prefixos{\template{#1&{V}2}}

\def\endprefixos{\end{\template}}

\end{patternscode}

You may even define a set of macros that completely replaces the task
of mkpattern of generating the patterns. If, after the complete expansion,
your macros result in the control sequence \lee followed by a (possibly long)
list of patterns, those patterns will be placed in the patterns file. Remember
to insert a \newline from time to time. If you add some \exceptions be-
fore generating the patterns you may use mkpattern as a formatter for your
patterns.

When material to be output is seen by the program it is not usually
directly output, but it instead gets placed in a buffer called \linesofar.
This is also what \put does. If you want something to be output immediately,
before the current line is completed, write

\iwrite{〈material〉},

but recall that each write goes to a separate line. Note also that iwrite is a
low level macro that does not provide its own lee at the end.

9



12. Tracing and the log file

Mkpattern displays in the log file each defined letter set, as can be seen by
running the example. If \tracingexceptions is positive it will also write the
exceptions found and the subsequent replacement, as well as the exceptions
that were written but did not arise.

10


