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Introduction

In this note, we prove the following result:

Theorem

There exists an infinite complete distributive lattice K with
only the two trivial complete congruence relations.
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The Π∗ construction

The following construction is crucial in the proof of our
Theorem:

Definition

Let Di , for i ∈ I , be complete distributive lattices satisfying
condition (J). Their Π∗ product is defined as follows:

Π∗(Di | i ∈ I ) = Π(D−
i | i ∈ I ) + 1;

that is, Π∗(Di | i ∈ I ) is Π(D−
i | i ∈ I ) with a new unit element.
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Illustrating the construction

Π(Di | i ∈ I)

Π(D−

i
| i ∈ I)

Π(D−

i
| i ∈ I)

Π(D−

i
| i ∈ I) + 1;



Complete-
simple

distributive
lattices

Introduction

Construction

Second result

Proof

References

Notation

If i ∈ I and d ∈ D−
i , then

〈. . . , 0, . . . , d , . . . , 0, . . .〉

is the element of Π∗(Di | i ∈ I ) whose i-th component is d and
all the other components are 0.
See also Ernest T. Moynahan, 1957.
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The second result

Next we verify the following result:

Theorem

Let Di , i ∈ I , be complete distributive lattices satisfying
condition (J). Let Θ be a complete congruence relation on
Π∗(Di | i ∈ I ). If there exist i ∈ I and d ∈ Di with d < 1i such
that, for all d ≤ c < 1i ,

〈. . . , d , . . . , 0, . . .〉 ≡ 〈. . . , c , . . . , 0, . . .〉 (mod Θ),

then Θ = ι.
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Starting the proof

Since

〈. . . , d , . . . , 0, . . .〉 ≡ 〈. . . , c , . . . , 0, . . .〉 (mod Θ),

and Θ is a complete congruence relation, it follows from
condition (J) that

〈. . . , d , . . . , 0, . . .〉 ≡
∨

(〈. . . , c , . . . , 0, . . .〉 | d ≤ c < 1) (mod Θ).
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Completing the proof

Let j ∈ I , j 6= i , and let a ∈ D−
j . Meeting both sides of the

congruence with 〈. . . , a, . . . , 0, . . .〉, we obtain that

0 = 〈. . . , a, . . . , 0, . . .〉 (mod Θ),

Using the completeness of Θ and the penultimate equation, we
get:

0 ≡
∨

(〈. . . , a, . . . , 0, . . .〉 | a ∈ D−
j ) = 1 (mod Θ),

hence Θ = ι.
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