
PSTricks

pst-intersect

Intersecting arbitrary curves
v0.4

2014/03/16

Package author:

Christoph Bersch

Contents

1. Introduction 3

1.1. About the package . 3

1.2. Requirements . 3

1.3. Distribution and installation . 3

1.4. License . 4

1.5. Acknowledgements . 4

2. Usage 5

2.1. Saving paths and curves . 5

2.2. Calculating intersections . 6

2.3. Visualization of saved paths . 7

2.4. Visualization of saved intersections 9

3. Examples 11

A. Revision history 12

2

1. Introduction

1.1. About the package

pst-intersect is a PSTricks package to calculate the intersections of Bezier

curves and arbitrary Postscript paths.

Please note, that package versions 0.x are experimental, and may be subject to

fundamental changes, which aren’t backward compatible.

1.2. Requirements

pst-intersect requires recent versions of pstricks, pst-node, pst-eucl and

pst-func.

All PSTricks package rely heavily on the Postscript language so that the typi-

cal workflow involves latex, dvips, and ps2pdf. Of course there are several

alternative ways to compile your documents.1

1.3. Distribution and installation

This package is available on CTAN2.

The pst-intersect package consists of the two main files pst-intersect.ins

and pst-intersect.dtx. By running tex pst-intersect.ins the following de-

rived files are generated:

• pst-intersect.pro: the Postscript prolog file

• pst-intersect.sty: the LATEX style file

1http://tug.org/PSTricks/main.cgi?file=pdf/pdfoutput
2http://mirror.ctan.org/help/Catalogue/entries/pst-intersect.html

3

http://tug.org/PSTricks/main.cgi?file=pdf/pdfoutput
http://mirror.ctan.org/help/Catalogue/entries/pst-intersect.html

1.4. License 4

• pst-intersect.tex: the TEX file

Save the files in a directory which is part of your local TEX tree.

Do not forget to run texhash to update this tree. For MiKTEX users, do not

forget to update the file name database (FNDB).

For more detailed information see the documentation of your personal LATEX

distribution on installing packages to your local TEX system.

1.4. License

Permission is granted to copy, distribute and/or modify this software under the

terms of the LATEX Project Public License, version 1.3c.3 This package is author-

maintained.

1.5. Acknowledgements

I thank Marco Cecchetti, for his lib2geom-library4 from which I derived great

parts of the Postscript code for the Bézier clipping algorithm. Also I want to

thank William A. Casselman for the Postscript code of the quicksort procedure

and the procedure for calculating the convex hull from his book “Mathematical

Illustration”5, and the permission to use it. The documentation style is a mixture

of the pst-doc class (Herbert Voß) and the ltxdockit package for the biblatex

documentation (Philipp Lehman).

3http://www.latex-project.org/lppl.txt
4http://lib2geom.sourceforge.net/
5http://www.math.ubc.ca/~cass/graphics/text/www/

http://www.latex-project.org/lppl.txt
http://lib2geom.sourceforge.net/
http://www.math.ubc.ca/~cass/graphics/text/www/

2. Usage

The pst-intersect package can compute the intersections of arbitrary Postscript

paths. These are composed of three primitive operations: lines (lineto), third

order Bézier curves (curveto) and jumps (moveto). More specialized construc-

tions, like circles, are converted internally to curveto operations. Besides these

three path operations, the pst-intersect supports Bézier curves up to nineth

order. As these aren’t primitive Postscript path elements, they require separate

handling.

The general workflow consists in defining and saving paths and curves, and then

compute the intersections between them. Following, those intersection points

can be used as normal PSTricks nodes, or portions of the curves and paths can

be retraced (e.g. between two intersections).

2.1. Saving paths and curves

\pssavepath[〈options〉]{〈curvename〉}{〈commands〉}

Saves the complete path, which is generated by 〈commands〉, under the name

〈curvename〉. The macro is a modification of \pscustom, and does, therefore,

supports only the same commands.

By default, the path is also drawn, which can be changed over the 〈options〉,

e.g. with linestyle=none.

\begin{pspicture}(3,2)

\pssavepath[linecolor=DOrange]{MyPath}{%

\pscurve(0,2)(0,0.5)(3,1)

}%

\end{pspicture}

5

2.2. Calculating intersections 6

\pssavebezier[〈options〉]{〈curvename〉}(〈X0〉). . . (〈Xn〉)

The Postscript language supports only third-order Bézier curves. With the

macro \pssavebezier you can define Bézier curves up to nineth order. The

specified nodes are the control points of the curve, for an n-th order curve

n + 1 control points are required. The drawing of the curve is done with the

\psBezier macro from the pst-func package.

bb

bb

b

b

\begin{pspicture}(3,2)

\pssavebezier[showpoints]{MyBez}(0,0)(0,1)(1,2)(3,2)(1,0)(3,0)

\end{pspicture}

2.2. Calculating intersections

\psintersect{〈curveA〉}{〈curveB〉}

After having saved some paths and curves, you can now calculate the intersec-

tions. That is done with the \psintersect macro. This needs as arguments

two names of paths or curves (the 〈curvename〉 argument of the two \pssave*
macros).

b
b

\begin{pspicture}(3,2)

\pssavepath[linecolor=DOrange]{MyPath}{\pscurve(0,2)(0,0.5)(3,1)}

\pssavebezier{MyBez}(0,0)(0,1)(1,2)(3,2)(1,0)(3,0)

\psintersect[showpoints]{MyPath}{MyBez}

\end{pspicture}

The showpoints PSTricks parameter determines, if the intersections are drawn

directly.

name=〈string〉 default: @tmp

The calculated intersections can be saved for later use under this name (see

Sec. 2.4).

saveintersections=true, false default: true

If this option is set, the intersections are saved as PSTricks nodes with the

names 〈name〉1, 〈name〉2 The numbering is ascending according to the

value of their x-coordinate.

2.3. Visualization of saved paths 7

b

b

b
b1
2

3
4

\begin{pspicture}(5,5)

\pssavebezier[linecolor=DOrange]{A}%

(0,0)(0,5)(5,5)(5,1)(1,1.5)

\pssavebezier{B}(0,5)(0,0)(5,0)(5,5)(0,2)

\psintersect[name=C, showpoints]{A}{B}

\uput[150](C1){1}

\uput[85](C2){2}

\uput[90](C3){3}

\uput[-20](C4){4}

\end{pspicture}

2.3. Visualization of saved paths

\pstracecurve[〈options〉]{〈curvename〉}

Saved paths and curves can be drawn again with this macro.

\begin{pspicture}(2,2)

\pssavepath{Circle}{\pscircle(1,1){1}}

\pstracecurve[linestyle=dashed, linecolor=green]{Circle}

\end{pspicture}

tstart=〈num〉

tstop=〈num〉

With these parameters also parts of paths and curves can be drawn. For Bézier

curves the allowed range is [0, 1], where 0 corresponds to the start of the curve,

which is given by the first node given to \pssavebezier.

b

b

bb

b

b

bb

b

b

\begin{pspicture}(5,5)

\psset{showpoints}

\pssavebezier{B}(0,5)(0,0)(5,0)(5,5)(0,2)

\pstracecurve[linestyle=dashed, linecolor=blue!50,

tstart=0, tstop=0.5]{B}

\end{pspicture}

2.3. Visualization of saved paths 8

Paths can be composed of more than one segmet, and the range is [0, n], where

n is the number of path segments. For this you must keep in mind, that also e.g

\pscurve paths, circles or arcs consist of several segments.

\begin{pspicture}(2,2)

\pssavepath[linestyle=none]{Circle}{\pscircle(1,1){1}}

\pstracecurve[tstart=0, tstop=1, linecolor=green]{Circle}

\pstracecurve[tstart=2, tstop=3, linecolor=red]{Circle}

\pstracecurve[tstart=1.25, tstop=1.75, linecolor=blue]{Circle}

\end{pspicture}

Please note, that the order of tstart and tstop plays a role. For tstart >

tstop the path direction is reversed.

\begin{pspicture}(2,2)

\psset{arrows=->, arrowscale=1.5}

\pssavepath[linestyle=dashed, '
linewidth=0.5\pslinewidth]{A}{\psline(0,0)(1,2)(2,0)}

\pstracecurve[tstart=0.1, tstop=0.9]{A}

\end{pspicture}

\begin{pspicture}(2,2)

\psset{arrows=->, arrowscale=1.5}

\pssavepath[linestyle=dashed, '
linewidth=0.5\pslinewidth]{A}{\psline(0,0)(1,2)(2,0)}

\pstracecurve[tstart=0.9, tstop=0.1]{A}

\end{pspicture}

\psGetCurvePoint{〈curvename〉}{〈t〉}

Save the coordinates of 〈curvename〉 at the point 〈t〉.

b

b

b
b b b b b

b

b

b

\begin{pspicture}(3,3)

\pssavebezier{A}(0,0)(0,3)(3,0)(3,3)

\multido{\r=0+0.1}{11}{%

\psdot(! \psGetCurvePoint{A}{\r} I-A.x I-A.y)}

\end{pspicture}

2.4. Visualization of saved intersections 9

2.4. Visualization of saved intersections

\pstracecurve[〈options〉]{〈intersection〉}{〈curvename〉}

istart=〈num〉

istop=〈num〉

These two parameters can be used to draw path or curve segments between

intersections. The intersections are numbered starting at 1 in ascending order

along the curve.

\begin{pspicture}(5.2,5.2)

\pssavebezier[linewidth=0.5\pslinewidth, '
linestyle=dashed, arrows=->]{A}(0,0)(0,5)(5,2)(5,5)

\pssavebezier[linewidth=0.5\pslinewidth, '
linestyle=dashed, '
arrows=->]{B}(0,2.5)(2.5,2.5)(4.5, 3)(2,4)

\psintersect[linecolor=green!70!black, name=C]{A}{B}

\pstracecurve[linecolor=red, istart=1, istop=2]{C}{A}

\pstracecurve[linecolor=blue, istart=1, istop=2]{C}{B}

\end{pspicture}

If only one value is specified, e.g. istop, the curve is drawn from the start to

the respective intersection. If only istart is given, the curve is drawn from

this intersection to the curve end. The parameters istart and istop can be

combined with tstart and tstop.

\begin{pspicture}(5.2,5.2)

\pssavebezier[linewidth=0.5\pslinewidth, '
linestyle=dashed, arrows=->]{A}(0,0)(0,5)(5,2)(5,5)

\pssavebezier[linewidth=0.5\pslinewidth, '
linestyle=dashed, '
arrows=->]{B}(0,2.5)(2.5,2.5)(4.5, 3)(2,4)

\psintersect[linecolor=green!70!black, name=C]{A}{B}

\pstracecurve[linecolor=red, istop=2]{C}{A}

\pstracecurve[linecolor=blue, istart=1]{C}{B}

\end{pspicture}

2.4. Visualization of saved intersections 10

\psGetIsectCenter{〈intersection〉}{〈curvename〉}{〈n〉}

Loads the coordinates of the n-th intersection point of the path 〈curvename〉 in

the intersection set 〈intersection〉. The numbering of the intersections starts at

〈n〉= 1 and the number increases along the path in its original direction.

b

b

b
b1
2

3
4

\begin{pspicture}(4,5)

\pssavebezier[linecolor=DOrange, arrows=->]{A}%

(0,0)(0,5)(5,5)(5,1)(1,1.5)

\pssavebezier[arrows=->]{B}(0,5)(0,0)(5,0)(5,5)(0,2)

\psintersect[name=C, showpoints]{A}{B}

\color{DOrange}

\uput[150](!\psGetIsectCenter{C}{A}{1} I-C1.x I-C1.y){1}

\uput[85](!\psGetIsectCenter{C}{A}{2} I-C2.x I-C2.y){2}

\uput[-20](!\psGetIsectCenter{C}{A}{3} I-C3.x I-C3.y){3}

\uput[90](!\psGetIsectCenter{C}{A}{4} I-C4.x I-C4.y){4}

\end{pspicture}

Without 〈curvename〉 the points are sorted according to their x-coordinate:

b

b

b
b1
2

3
4

\begin{pspicture}(4,5)

\pssavebezier[linecolor=DOrange, arrows=->]{A}%

(0,0)(0,5)(5,5)(5,1)(1,1.5)

\pssavebezier[arrows=->]{B}(0,5)(0,0)(5,0)(5,5)(0,2)

\psintersect[name=C, showpoints]{A}{B}

\uput[150](!\psGetIsectCenter{C}{}{1} I-C1.x I-C1.y){1}

\uput[85](!\psGetIsectCenter{C}{}{2} I-C2.x I-C2.y){2}

\uput[90](!\psGetIsectCenter{C}{}{3} I-C3.x I-C3.y){3}

\uput[-20](!\psGetIsectCenter{C}{}{4} I-C4.x I-C4.y){4}

\end{pspicture}

The intersection points can also be loaded with saveintersections and

saveNodeCoors. In that case, the numbering of the intersection increases ac-

cording to their x coordinate.

3. Examples

Ex. 3.1

b

b

bb

b

b

b

b

b

b

b

b

bb

b

b

b

b

b

b

\begin{pspicture}(5,5)

\pssavebezier{A}(0,0)(0,5)(5,5)(5,1)(1,1.5)

\multido{\i=100+-20,\r=1+-0.2}{5}{%

\pstracecurve[linecolor=red!\i, tstop=\r, '
arrows=-|, showpoints]{A}

}%

\end{pspicture}

Ex. 3.2: The package can also calculate the intersections of functions which are drawn with

\psplot. Here you must keep in mind, that such curves consists of plotpoints segments,

which must all be considered for intersections, what can result in long calculations.

bb
bb

bb

b
b

b

b

b
1

2

3

4
5

6 7
8 9 10 11

\begin{pspicture}(10,4.4)

\pssavepath{A}{\psplot[plotpoints=200]{0}{10}{x 180 mul sin 1 add 2 mul}}

\pssavepath{B}{\psplot[plotpoints=50]{0}{10}{2 x neg 0.5 mul exp 4 mul}}

\psintersect[name=C, showpoints]{A}{B}

\multido{\i=1+1}{5}{\uput[210](C\i){\i}}

\multido{\i=6+2,\ii=7+2}{3}{\uput[225](C\i){\i}\uput[-45](C\ii){\ii}}

\end{pspicture}

11

A. Revision history

This revision history is a list of changes relevant to users of this package.

Changes of a more technical nature which do not affect the user interface or

the behavior of the package are not included in the list. If an entry in the revi-

sion history states that a feature has been improved or extended, this indicates

a modification which either does not affect the syntax and behavior of the pack-

age or is syntactically backwards compatible (such as the addition of an optional

argument to an existing command). Entries stating that a feature has been dep-

recated, modified, fixed, renamed, or removed demand attention. They indicate

a modification which may require changes to existing documents.

0.4 2014-03-16

Added \psGetCurvePoint.

Fixed \pstracecurve for use with \pscustom.

Fixed arrow behavior.

0.3 2014-03-04

Fixed \psGetIsectNode to work with more than one segment.

Modified \psGetIsectNode and the naming conventions of the variables.

Fixed missing support for pst-node’s saveNodeCoors parameter to

saveintersections.

0.2 2014-02-26

Added support for arrows parameter to \pstracecurve.

Modified parameters tstart, tstop, istart and istop to respect different

directions.

Added \psGetIsectCenter

Fixed a bug in the termination of the iteration procedure.

Fixed a bug in the point order of Bézier curves, which was related to a now

fixed bug in pst-func.

Several other improvements.

12

2.4. Visualization of saved intersections 13

0.1 2014-02-19

First CTAN version

	Contents
	1 Introduction
	1.1 About the package
	1.2 Requirements
	1.3 Distribution and installation
	1.4 License
	1.5 Acknowledgements

	2 Usage
	2.1 Saving paths and curves
	2.2 Calculating intersections
	2.3 Visualization of saved paths
	2.4 Visualization of saved intersections

	3 Examples
	A Revision history

