
The Font
Installation Guide
Using Postscript fonts to their full

potential with Latex

Originally written by

Philipp Lehman

December 2004 · Revision 2.14

Copyright © 2002–2004 Philipp Lehman

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, version 1.2,
with no invariant sections, no front-cover texts, and no back-cover
texts.

A copy of the license is included in the appendix.

This document is distributed in the hope that it will be useful, but
without any warranty; without even the implied warranty of
merchantability or fitness for a particular purpose.

Contents

Introduction 5

1 The basics 9
1.1 Renaming the font files . 10
1.2 Creating metrics and virtual fonts 12
1.3 Compiling metrics and virtual fonts 16
1.4 Installing fonts and support files 16
1.5 Creating and installing map files 18
1.6 Using the new fonts . 20
1.7 Computer Modern and T1 encoding 22

2 Standard font sets 27
2.1 A verbose fontinst file . 27
2.2 The latinfamily macro revisited 32

3 Optical small caps and hanging figures 35
3.1 The fontinst file . 37
3.2 An extended style file . 42
3.3 The fonts supplied with TeX 44

4 The euro currency symbol 45
4.1 Uncoded euro symbol . 45
4.2 Euro symbol encoded as currency symbol 46
4.3 Euro symbol taken from symbol font 48
4.4 Installing symbol fonts . 49

5 Expert font sets, regular setup 55
5.1 A basic fontinst file . 56
5.2 A verbose fontinst file . 56
5.3 Inferior and superior figures 60
5.4 An extended style file . 63

3

4 CONTENTS

5.5 Using the features of expert fonts 65

6 Expert font sets, extended setup 67
6.1 The fontinst file . 68
6.2 Installing text ornaments . 74
6.3 Extending the user interface 75
6.4 A high-level interface for ornaments 78
6.5 An extended style file . 79

7 Creating map files 81
7.1 The syntax of map files . 81
7.2 Expert and symbol fonts . 85

A Code tables 89

B Text companion symbols 93
B.1 Symbols in text fonts . 93
B.2 Symbols specific to expert fonts 94
B.3 Symbols specific to TeX fonts 95

C The GNU Free Documentation License 97
C.0 Preamble . 97
C.1 Applicability and definitions 98
C.2 Verbatim copying . 99
C.3 Copying in quantity . 100
C.4 Modifications . 100
C.5 Combining documents . 103
C.6 Collections of documents . 103
C.7 Aggregation with independent works 103
C.8 Translation . 104
C.9 Termination . 104
C.10 Future revisions of this license 104

D Revision history 107

Introduction

This guide to setting up PostScript Type 1 fonts for use with TeX and LaTeX
is not systematic but task-oriented. It will discuss the most common scenarios
you are likely to encounter when installing PostScript fonts. The individual
tutorials collected here are not self-contained, though: the second tutorial will
presuppose that you have read the first one and so on. All the tools employed
in the installation process are documented well, the actual difficulty most
users are facing when trying to install new fonts is understanding how to
put all the pieces together. This applies to fontinst, the TeX font installation
tool, in particular. Controlled by TeX commands, fontinst is a powerful and
extremely flexible tool. While its manual documents all available commands
individually, you will most likely wonder how to actually employ them after
reading the manual. This is what this guide is about.

Please note that the original author of this guide has resigned as
maintainer. As of this writing (August 2010), almost all of the in-
formation in this document is still applicable. Section 1.5, however,
is in need of a partial update and the Fontname scheme has been
gradually losing its attraction.

Additional documentation

You will need the following additional manuals while working with this guide:

The fontinst manual Shipping as fontinst.dvi, the fontinst manual is
the most important piece of documentation you will need when working
with this guide since all files required for proper PostScript font support
can be generated with fontinst. You do not need to work through the
sections explaining all low-level commands in detail, but make sure
that you have read the more general parts and that you have a basic
understanding of what fontinst is and what it does. If this manual is

5

6 CONTENTS

not included in your distribution, get it from the Comprehensive TeX
Archive Network (ctan).1

The Fontname scheme Fonts used with TeX are usually renamed accord-
ing to a dedicated naming standard, the Fontname scheme by Karl
Berry. Take a look at the outline of the scheme as given in fontname.
dvi and make sure you have copies of the individual map files at hand.
These lists define names for a large number of commercial PostScript
fonts. You will need them while working with this guide. If the doc-
umentation of the Fontname scheme is not part of your distribution,
you can read it online2 or download the complete package from a ctan
ftp server.3

The LaTeX font selection guide It might be a good idea to read the La-
TeX font selection guide as well before proceeding with the first tuto-
rial. It provides an overview of the New Font Selection Scheme (nfss),
the part of LaTeX which controls font selection. This system is not
used during font installation, but it will help you to understand certain
aspects of the installation process. This guide ships with most TeX dis-
tributions as fntguide.dvi and is also available in pdf format from
ctan.4 Feel free to skip the chapter about math fonts as we are only
going to deal with text fonts here. Setting up math fonts is a science
in its own right.

Software requirements

Fontinst and the tools required to compile font metrics and virtual fonts
are part of all major TeX distributions. The installation recipes discussed
in this guide should therefore work on virtually every platform supported by
TeX. The installation procedure as a whole, however, includes certain aspects
which are specific to a given platform and TeX distribution. Such aspects
include the final location of fonts and support files, the way additional tools
such as dvips are configured, and the command used to update the file hash
tables. In such cases the guide will be referring to the teTeX distribution.
Adapting these instructions to other platforms and distributions, however,
should not pose a major obstacle. Note that the installation recipes in this
guide require fontinst version 1.9 or later. As of this writing (December 2004),

1http://www.ctan.org/tex-archive/fonts/utilities/fontinst/doc/manual/
2http://www.ctan.org/tex-archive/info/fontname/
3ftp://tug.ctan.org/tex-archive/info/fontname.tar.gz
4http://www.ctan.org/tex-archive/macros/latex/doc/fntguide.pdf

http://www.ctan.org/tex-archive/fonts/utilities/fontinst/doc/manual/
http://www.ctan.org/tex-archive/info/fontname/
ftp://tug.ctan.org/tex-archive/info/fontname.tar.gz
http://www.ctan.org/tex-archive/macros/latex/doc/fntguide.pdf

CONTENTS 7

version 1.926 is the latest stable release available from ctan.5 If you are
not sure whether your TeX installation includes an up-to-date version of
fontinst, locate the file fontinst.sty on your system and inspect its header.
Alternatively, you can use the following plain TeX file:
\input fontinst.sty
\fontinstversion
\bye

Run this file through plain tex and inspect the newly created dvi file.
It should bear the version number 1.926 or higher. If you need to update
fontinst, note that you most probably require a newer version of the Post-
Script encoding vector 8r.enc for dvips and pdfTeX as well. This file is
distributed separately and is not included in the fontinst release.6 The latest
release of the guide you are just reading can always be found at ctan.7 You
might want to check for an update before you continue.

Further assistance

While this guide tries to address the most common questions concerning the
integration of PostScript Type 1 fonts with TeX, it cannot cover all possible
cases, nor will it introduce all of fontinst’s features. If you have any further
questions concerning fontinst after reading this guide, you might want to post
them on the fontinst mailing list.8 If you are in need of further assistance
with respect to TeX and fonts in general, you might also want to consider
posting them on the TeX-fonts mailing list.9 Both lists are friendly forums
enjoying competent contributors. They are not busy at all times, so allow a
few days for replies before you turn to a different forum. Posting questions
on the comp.text.tex newsgroup is worthwhile as well, especially with more
general questions. This newsgroup is very busy at all times, but the replies
might be less focused when it comes to specific questions about fontinst or
PostScript Type 1 fonts. Please refrain from sending any questions to the
author of this guide.

5http://www.ctan.org/tex-archive/fonts/utilities/fontinst/
6http://www.ctan.org/tex-archive/info/fontname/8r.enc
7http://www.ctan.org/tex-archive/info/Type1fonts/fontinstallationguide/
8http://www.tug.org/mailman/listinfo/fontinst/
9http://www.math.utah.edu/mailman/listinfo/tex-fonts/

http://www.ctan.org/tex-archive/fonts/utilities/fontinst/
http://www.ctan.org/tex-archive/info/fontname/8r.enc
http://www.ctan.org/tex-archive/info/Type1fonts/fontinstallationguide/
http://www.tug.org/mailman/listinfo/fontinst/
http://www.math.utah.edu/mailman/listinfo/tex-fonts/

8 CONTENTS

Tutorial 1

The basics

This introductory tutorial serves two purposes. It covers the most basic in-
stallation scenario by explaining how to use fontinst’s \latinfamily macro
to integrate a small font family into a TeX system. By providing step-by-
step installation instructions, it will also discuss the installation procedure
as a whole. The later tutorials will focus on the more advanced capabilities
of fontinst without going over all of the installation steps again. Before we
begin, let us take a look at an overview of the installation procedure:

Step 1: renaming the font files First of all, we copy all Type 1 fonts (suf-
fix pfb) and the corresponding metric files in text format (afm) to
a temporary directory and rename them according to the Fontname
scheme.

Step 2: creating metrics and virtual fonts We will use fontinst, a font
installer that works with Adobe font metric files in text format (afm),
to generate TeX metric files and virtual fonts. Fontinst is normally not
used interactively but controlled by a TeX file. Since the driver file is
specific to a given font family, we need to write a suitable file for our
fonts.

Step 3: compiling metrics and virtual fonts Fontinst will generate font
metrics and virtual fonts in a human-readable format which need to be
converted to a machine-readable form afterwards. Hence we run all
property list files (pl) created by fontinst through pltotf to create
TeX font metrics (tfm) and all virtual property list files (vpl) through
vptovf to create virtual fonts (vf) and the corresponding TeX font
metrics for them.

Step 4: installing fonts and support files Calling fontinst a font installer
is slightly misleading in that it does not move any files around. We still

9

10 TUTORIAL 1. THE BASICS

need to move all font metrics (afm), Type 1 font outlines (pfb), TeX
font metrics (tfm), virtual fonts (vf), and font definition files (fd) to
the local TeX tree manually.

Step 5: creating and installing map files The fonts are now set up for
TeX and LaTeX, but not for dvi and pdf drivers, which are configured
separately. We create map files for dvips, pdfTeX, and xdvi. We install
the map files and add them to the applications’ configuration files.

Step 6: updating the hash tables Finally, we run texhash to update the
file hash tables used by the kpathsea search library. The remaining files
in our working directory are not required anymore and may be deleted.

1.1 Renaming the font files

Users unfamiliar with fontinst tend to moan when introduced to the Font-
name scheme for the first time. This file naming standard, which is also
known by the name of its creator as the Karl Berry scheme, is often regarded
as overly complicated, cumbersome, unclear, and unmanageable. And indeed,
it will appear somewhat cumbersome to anyone working with an operating
system that does not impose silly limits on the lengths of file names. All
of that is not the fault of its creator, however, but an inevitable result of
the historical need to encode a complete font designation in a string of eight
characters in order to cope with the limitations of filesystems which are not
capable of handling longer file names. The most important asset of the Font-
name scheme is that it is the only formalized naming system widely used
within the TeX community. Given the large number of files required to in-
tegrate a given typeface into a TeX system, installations without formal file
naming would quickly get out of control. So, if the next couple of paragraphs
should sound a bit cumbersome to you, you are in good company. Rest as-
sured that after installing a few font families and watching your installation
grow, you will understand the benefits of this scheme.

In order to understand the basic principles of the Fontname scheme, see
the file fontname.dvi for an overview as well as excerpts from various map
files. Browse the map files of individual vendors for the complete listings.
When using the \latinfamily macro, strict adherence to the scheme is re-
quired. If you write a custom fontinst file using lower-level commands, the
naming is technically up to you. It is still a good idea to stick to the naming
system where possible. If a given typeface is not included in the map file for
the respective foundry, take the foundry code from supplier.map and the
code of the typeface from typeface.map. If the typeface is not listed at all,

1.1. RENAMING THE FONT FILES 11

you will need to create a new code. This should be an unused one if possi-
ble. Try handling weight, variant, and encoding codes as strictly as possible.
Foundry and typeface codes may be handled more liberally.

For large text font families, most font vendors do not put all fonts in
a single package. They usually offer a base package containing upright and
italic/oblique fonts plus an advanced package which has to be purchased
separately and can normally not be used independently in a sensible way.
Typical examples of this kind are so-called sc & osf packages including a
set of optical small caps1 and hanging figures2 which complement the fonts
in the base package. The advanced package might also contain a set of expert3

fonts, additional weights such as light, semibold, or black, additional widths
such as condensed or extended, or symbols fonts providing text ornaments.

We will use Sabon as an example in this tutorial. The Sabon family of-
fered by Adobe is split up into two packages. The base package contains
upright and italic fonts (with lining figures) in regular and bold weights,
while the so-called sc & osf package provides optical small caps and hang-
ing figures. Hanging figures are also known as ‘old style’ figures, hence the
name sc & osf. In the first and the second tutorial we will deal with the
base package only. Adding the sc & osf package to the base install will be
discussed in the third tutorial. As we receive the package from Adobe or from
a vendor, it contains the following files:
sar_____.afm sai_____.afm sab_____.afm sabi_____.afm
sar_____.inf sai_____.inf sab_____.inf sabi_____.inf
sar_____.pfb sai_____.pfb sab_____.pfb sabi_____.pfb
sar_____.pfm sai_____.pfm sab_____.pfm sabi_____.pfm

Of those files, we only need two types: the font metrics in Ascii format (afm)
and the binary font outlines (pfb). We copy these to our working directory
to rename them. In this case, finding the proper names is simple because the
typeface is listed explicitly in adobe.map:

1Optical or real small caps, as opposed to mechanical or ‘faked’ ones, are special glyphs
found in a dedicated small caps font. They are preferable to mechanical small caps since
they were actually drawn by the font designer. Mechanical small caps are generated by
taking the tall caps of the font and scaling them down. The installation of optical small
caps will be discussed in tutorial 3.

2While lining figures are aligned with the height of the capital letters, hanging or
‘old style’ figures have ascenders and descenders to blend in with lowercase and mixed
case text. Hanging figures are designed for use within mixed case text whereas lining
figures are suitable for all uppercase text only. The latter also work well for applications
like numbered lists and, since they are usually monospaced, for tabular settings. The
installation of hanging figures will be discussed in tutorial 3 as well.

3Expert fonts are complements to be used in conjunction with regular text fonts. They
usually contain optical small caps, additional sets of figures, ligatures as well as some other
symbols. Please refer to tutorial 5 for further information.

12 TUTORIAL 1. THE BASICS

psbr8a Sabon-Roman A 088 sar_____
psbri8a Sabon-Italic A 088 sai_____
psbb8a Sabon-Bold A 088 sab_____
psbbi8a Sabon-BoldItalic A 088 sabi____

The first column indicates the Fontname name and the last column the orig-
inal name of the files as shipped by the vendor.4 After renaming, we find the
following files in the working directory:
psbr8a.afm psbri8a.afm psbb8a.afm psbbi8a.afm
psbr8a.pfb psbri8a.pfb psbb8a.pfb psbbi8a.pfb

We can now begin with the installation process.

1.2 Creating metrics and virtual fonts

Since writing a fontinst file can be quite a time-consuming thing to do,
fontinst provides a special macro which is able to deal with standard sce-
narios like this one. You can look up the \latinfamily command in the
fontinst manual to understand what it does in detail. For our situation, it
will suffice to say that it is able to recognize the standard fonts we pro-
vide by their file name – hence the need for strict adherence to the Fontname
scheme in this case. Fontinst will create all metric and auxiliary files required
by LaTeX without further directions in the form of lower-level commands.
Therefore our fontinst file is as simple as it can get:

1 \input fontinst.sty
2 \needsfontinstversion{1.926}
3 \recordtransforms{psb-rec.tex}
4 \latinfamily{psb}{}
5 \endrecordtransforms
6 \bye

First of all, we load fontinst and add line 2 to verify that we are using a suit-
ably recent version of fontinst. After that, we basically call the \latinfamily
macro in line 4, using the base of the file names (the foundry code plus the
typeface code) as its first argument. The second argument of this macro is
code to be expanded whenever this typeface is used. It is frequently employed
to suppress hyphenation of fixed-width fonts by setting the hyphenation char-
acter to a non-existing encoding slot. If we wanted to suppress hyphenation
for this font family, we would call the macro like this:
\latinfamily{psb}{\hyphenchar\font=-1}

4The fourth column may also prove helpful: it indicates the number of the Adobe font
package to which this font belongs. This number will save you a lot of time if you are
trying to locate updated metric files for a font on Adobe’s ftp server since the files are
sorted by package number there.

1.2. CREATING METRICS AND VIRTUAL FONTS 13

When installing fixed-width fonts we would also define the integer variable
monowidth. This variable is used internally by fontinst’s encoding vectors.
Initializing it to any value will disable ligatures and adjust certain spacing
values. The exact value does not matter since fontinst uses the existence of
this variable as a boolean indicator – do not set it to zero for proportional
fonts. For fixed-width fonts the following line should be given before calling
\latinfamily:
\setint{monowidth}{1}

Lines 3 and 5 enclose the \latinfamily macro in an environment that
records all transformations applied to the fonts during installation and writes
them to the external file psb-rec.tex. We will need this file later in order to
create a map file for Sabon. This process will be discussed in section 1.5. We
save our fontinst driver file as, for example, psb-drv.tex and run it through
tex:
tex psb-drv.tex

The \latinfamily macro will create metric files, virtual fonts, and auxiliary
files for four different encodings: TeX Base 1, OT1, T1, and TS1. While TeX
Base 1 serves as the basis of virtual fonts using other encodings, it is usually
not employed as such on the LaTeX level, although \latinfamily provides
font definition files for the TeX Base 1 encoded fonts as well.

The OT1 encoding is a 7-bit legacy encoding solely suitable for text us-
ing the English alphabet only because it requires the use of composite glyphs
when typesetting accented letters. These glyphs are inferior to the native
glyphs provided by PostScript fonts. When using OT1 encoding and type-
setting the letter a with a grave accent, for example, TeX does not use the
real glyph à as provided by the font because OT1 discards all accented let-
ters (this amounts to almost half of the glyphs found in common PostScript
fonts). Instead, TeX will use the stand-alone grave accent and move it over
the lowercase letter a to form a composite glyph. Apart from their inferior
typographic quality, composite letters break TeX’s hyphenation algorithm
so that words containing an accented letter are not hyphenated beyond this
letter. Another problem with them is that they break searching for words
containing accented letters in pdf files. In short, OT1 should be considered
obsolete unless you need the letters of the English alphabet only. But even
in this case, T1 encoding would be a sound choice.

T1, also known as Cork encoding, is a more recent text encoding suitable
for a wide range of languages using the Latin script. Also known as Text
Companion encoding, TS1 complements T1 by providing additional glyphs
such as currency signs and other frequently used symbols like ‘copyright’ or

14 TUTORIAL 1. THE BASICS

‘registered’. TS1 is never used as the main text encoding because it merely
contains symbols. A user interface to the glyphs found in TS1 is provided by
the textcomp package. Refer to appendix B for a list of all symbols provided
by textcomp.

When running the fontinst driver file, fontinst will write a lot of messages
to the terminal. These will include warnings about glyphs not being found,
since a few glyphs defined in OT1 and T1 encoding are missing from the
glyph set of our fonts:
(/usr/share/texmf/tex/fontinst/base/ot1.etx
Warning: missing glyph ‘dotlessj’.
Warning: missing glyph ‘lslashslash’.

(/usr/share/texmf/tex/fontinst/base/t1.etx
Warning: missing glyph ‘perthousandzero’.
Warning: missing glyph ‘dotlessj’.
Warning: missing glyph ‘Eng’.
Warning: missing glyph ‘eng’.

These warnings are normal, the missing glyphs are simply not provided by
most PostScript fonts. In addition to that, you will most likely be lacking
the ligatures ‘ff’, ‘ffi’, and ‘ffl’. This means that they will not be typeset as a
single glyph but as a sequence of characters. There is no warning message in
this case as fontinst will construct the ligatures using the single-letter glyphs
at hand. You will usually find these ligatures in so-called expert fonts which
complement the base fonts. Some foundries however, like FontFont, include
them in the base fonts. Standard PostScript fonts should always provide the
ligatures ‘fi’ and ‘fl’. The situation is worse for TS1 encoding since parts
of it are rather exotic, defining glyphs not found in industry-standard fonts
such as a ‘copyleft’ symbol, or glyphs which should rather go in a dedicated
symbol font such as arrow symbols:
(/usr/share/texmf/tex/fontinst/base/ts1.etx
Warning: missing glyph ‘arrowleft’.
Warning: missing glyph ‘arrowright’.
Warning: missing glyph ‘tieaccentlowercase’.
Warning: missing glyph ‘tieaccentcapital’.
Warning: missing glyph ‘newtieaccentlowercase’.
Warning: missing glyph ‘newtieaccentcapital’.
Warning: missing glyph ‘blank’.
Warning: missing glyph ‘hyphendbl’.
Warning: missing glyph ‘zerooldstyle’.
Warning: missing glyph ‘oneoldstyle’.
Warning: missing glyph ‘twooldstyle’.
Warning: missing glyph ‘threeoldstyle’.
Warning: missing glyph ‘fouroldstyle’.
Warning: missing glyph ‘fiveoldstyle’.
Warning: missing glyph ‘sixoldstyle’.
Warning: missing glyph ‘sevenoldstyle’.
Warning: missing glyph ‘eightoldstyle’.
Warning: missing glyph ‘nineoldstyle’.
Warning: missing glyph ‘angbracketleft’.

1.2. CREATING METRICS AND VIRTUAL FONTS 15

Warning: missing glyph ‘angbracketright’.
Warning: missing glyph ‘Omegainv’.
Warning: missing glyph ‘bigcircle’.
Warning: missing glyph ‘Omega’.
Warning: missing glyph ‘arrowup’.
Warning: missing glyph ‘arrowdown’.
Warning: missing glyph ‘born’.
Warning: missing glyph ‘divorced’.
Warning: missing glyph ‘died’.
Warning: missing glyph ‘leaf’.
Warning: missing glyph ‘married’.
Warning: missing glyph ‘musicalnote’.
Warning: missing glyph ‘hyphendblchar’.
Warning: missing glyph ‘dollaroldstyle’.
Warning: missing glyph ‘centoldstyle’.
Warning: missing glyph ‘colonmonetary’.
Warning: missing glyph ‘won’.
Warning: missing glyph ‘naira’.
Warning: missing glyph ‘guarani’.
Warning: missing glyph ‘peso’.
Warning: missing glyph ‘lira’.
Warning: missing glyph ‘recipe’.
Warning: missing glyph ‘interrobang’.
Warning: missing glyph ‘interrobangdown’.
Warning: missing glyph ‘dong’.
Warning: missing glyph ‘pertenthousand’.
Warning: missing glyph ‘pilcrow’.
Warning: missing glyph ‘baht’.
Warning: missing glyph ‘numero’.
Warning: missing glyph ‘discount’.
Warning: missing glyph ‘estimated’.
Warning: missing glyph ‘openbullet’.
Warning: missing glyph ‘servicemark’.
Warning: missing glyph ‘quillbracketleft’.
Warning: missing glyph ‘quillbracketright’.
Warning: missing glyph ‘copyleft’.
Warning: missing glyph ‘circledP’.
Warning: missing glyph ‘referencemark’.
Warning: missing glyph ‘radical’.
Warning: missing glyph ‘euro’.

While this may seem like a long list, it is not unusual when installing fonts
not specifically designed for TeX. You will get the most common symbols
such as currency signs and other frequently used symbols, and chances are
that you are not going to miss the lacking ones. If you want to learn more
about these encodings, simply run fontinst’s encoding vectors through latex
to get a dvi file containing a commented listing of all the glyphs:
latex 8r.etx
latex ot1.etx
latex t1.etx
latex ts1.etx

When fontinst is finished, all TeX font metrics and virtual fonts are available
in a human-readable format which still requires some post-processing before
we can install these files.

16 TUTORIAL 1. THE BASICS

1.3 Compiling metrics and virtual fonts

In order to convert the TeX metrics into a binary format that TeX can read
directly, we run the property list files (pl) created by fontinst through pltotf
to generate TeX font metric files (tfm). We also run the virtual property list
files (vpl) files through vptovf to create virtual fonts (vf). When using the
Bash shell, this can be accomplished as follows:
for file in *.pl; do pltotf $file; done
for file in *.vpl; do vptovf $file; done

The generation of TeX font metrics, virtual fonts, and font definition files is
now complete.

1.4 Installing fonts and support files

The teTeX distribution supports a total of three TeX directory trees by
default: a global one, a local one, and a user tree. The global tree is usually
maintained by package management software. It contains all files provided
by the teTeX distribution. The local tree is for everything that is not part
of teTeX but should be available system-wide.5 The user tree is intended for
private files of individual users on the system.

Fonts and everything related to them should go in the local tree if you
have administrative access on the system. Putting them in the global tree
is a bad idea because they might get overwritten when you update teTeX;
putting them in a private one will restrict access to them to a single user
which is probably not what you want if you have administrative access. It is
a good idea to define the variable $TEXMF (all trees) in a way that references
$TEXMFLOCAL (the local tree) before $TEXMFMAIN (the global tree). This will
allow you to install newer versions of selected packages in the local tree
without updating the whole install. I recommend defining $TEXMF as follows
in texmf.cnf:
TEXMF = {$HOMETEXMF,!!$TEXMFLOCAL,!!$TEXMFMAIN}

This will give you two levels on top of the global install: your local extensions
will be preferred over files in the global tree and can in turn be overridden
by individual users who put files in their private tree ($HOMETEXMF). These
settings should go into the global configuration file for the kpathsea search
library, texmf.cfg. For the rest of this section we will assume that we are
installing the fonts in the local tree and that its top directory is /usr/local/

5Other TeX distributions such as MiKTeX do not cater for three separate trees but
they also support a local tree which is separate from the global system tree.

1.4. INSTALLING FONTS AND SUPPORT FILES 17

share/texmf. The relevant branches of the local tree are as follows:
/usr/local/share/texmf/
/usr/local/share/texmf/dvips/
/usr/local/share/texmf/dvips/config/
/usr/local/share/texmf/fonts/
/usr/local/share/texmf/fonts/afm/
/usr/local/share/texmf/fonts/afm/adobe/
/usr/local/share/texmf/fonts/afm/adobe/sabon/
/usr/local/share/texmf/fonts/tfm/
/usr/local/share/texmf/fonts/tfm/adobe/
/usr/local/share/texmf/fonts/tfm/adobe/sabon/
/usr/local/share/texmf/fonts/type1/
/usr/local/share/texmf/fonts/type1/adobe/
/usr/local/share/texmf/fonts/type1/adobe/sabon/
/usr/local/share/texmf/fonts/vf/
/usr/local/share/texmf/fonts/vf/adobe/
/usr/local/share/texmf/fonts/vf/adobe/sabon/
/usr/local/share/texmf/pdftex/
/usr/local/share/texmf/pdftex/config/
/usr/local/share/texmf/tex/
/usr/local/share/texmf/tex/latex/
/usr/local/share/texmf/tex/latex/adobe/
/usr/local/share/texmf/tex/latex/adobe/sabon/
/usr/local/share/texmf/xdvi/
/usr/local/share/texmf/xdvi/config/

The main components of this directory structure are defined by the TeX
Directory Structure (tds),6 another standard introduced to cope with the
large number of files that make up a typical TeX system. The appropriate
locations for the different file types should be more or less obvious. The
fonts/ branch has subdirectories for Ascii font metrics (afm/), TeX font
metrics (tfm/), Type 1 fonts (type1/), and virtual fonts (vf/). It is custom-
ary to create subdirectories for the foundry and for each font family. You
can take the names of these subdirectories from the Fontname scheme as
well, although this is not a requirement. The standard directory name for
the foundry is given in the file supplier.map, the standard name for the
typeface in typeface.map. Here are the relevant lines from both files for
Sabon:
p adobe @r{Adobe (@samp{p} for PostScript)}
sb sabon Sabon b:ClassicalGaramondBT

The font description files (fd) for LaTeX go in a subdirectory of tex/latex/.
The exact location is up to you but I recommend using the foundry/typeface
scheme as well. We do not need the directories dvips/, pdftex/, and xdvi/
at this point, but we are going to use them later. Now we create all directories
and copy the files into the local tree as follows:
cp *.afm /usr/local/share/texmf/fonts/afm/adobe/sabon/
cp *.tfm /usr/local/share/texmf/fonts/tfm/adobe/sabon/

6http://www.tug.org/tds/

http://www.tug.org/tds/

18 TUTORIAL 1. THE BASICS

cp *.pfb /usr/local/share/texmf/fonts/type1/adobe/sabon/
cp *.vf /usr/local/share/texmf/fonts/vf/adobe/sabon/
cp *.fd /usr/local/share/texmf/tex/latex/adobe/sabon/

All the files that TeX and LaTeX need in order to use Sabon are now avail-
able. At this point we could create a perfectly valid dvi file with the right
amount of blank space for every glyph – but we would not see a single glyph
when looking at a dvi preview. Note that TeX itself is completely indifferent
to the actual font files. It will only use the metrics in the tfm files without
accessing the glyph outlines. Rendering or embedding fonts is at the respon-
sibility of the application which displays the dvi file or processes it further in
order to generate PostScript. A dvi file merely contains high-level references
to fonts and glyphs, it does not contain the actual font files or any low-level
instructions concerning reencoding or rendering. pdfTeX is a special case be-
cause it combines the roles of TeX and a pdf driver. All of these applications
need to know which fonts to use. This information is provided in ‘map’ files
which map font metrics to font outlines.

1.5 Creating and installing map files

In this guide, we will deal with the three most popular applications support-
ing PostScript fonts, the PostScript driver dvips, the dvi viewer xdvi, and
pdfTeX. All of them need to be provided with a suitable map file. Creating
map files is a rather laborious task when done manually as used to be cus-
tom in the past. As of version 1.9, fontinst is capable of creating map files
almost automatically. We still need to provide it with some instructions and
the required data, but this data can be collected by fontinst itself during
the installation process. For this reason, we had fontinst write the records to
the file psb-rec.tex in section 1.2. In order to transform these records into
a proper map file, fontinst still needs some guidance by means of another
fontinst driver file. We will call it psb-map.tex:

1 \input finstmsc.sty
2 \resetstr{PSfontsuffix}{.pfb}
3 \adddriver{dvips}{psb.map}
4 \input psb-rec.tex
5 \donedrivers
6 \bye

We start off by loading finstmsc.sty, the component of the fontinst package
which provides the map file writer we need. Line 2 resets the string used as
the suffix of all font files to .pfb (the default is .pfa) and line 3 activates the
map fragment writer for dvips, instructing it to write the properly formated
records to psb.map, our final map file. We load the data from psb-rec.tex

1.5. CREATING AND INSTALLING MAP FILES 19

and start the transformation process in line 4. After running psb-map.tex
through tex, we get a valid map file for dvips. But what about xdvi and
pdfTeX? As of this writing (December 2004), map file support in fontinst is
restricted to dvips and dvipdfm. Fortunately, xdvi and pdfTeX are capable
of reading dvips’s map files to a certain extent. If written with a little bit
of care, dvips, pdfTeX, and xdvi can share the same map file. The map files
created by fontinst’s map file writer for dvips should work fine in this respect.
For details on the format of map files, please refer to tutorial 7.

We install the map file by copying psb.map to the branch dvips/config/
in the local TeX tree. In order to configure dvips, we locate the default
configuration file of dvips (config.ps) in the main TeX tree and copy it to
the same location. If the search order for all TeX trees is set up as suggested
above, this local copy will now be picked up instead of the global one. We
open this file in a text editor, locate the section for map files (lines defining
map files begin with a lowercase p), and add the new map file so that the
updated section looks as follows:
% Map files
p +psfonts.map
p ...
p +psb.map

The procedure for pdfTeX is similar: the configuration file is called pdftex.
cfg and map files are marked with the string map at the beginning of the
line. After copying the file to the branch pdftex/config of the local tree and
updating it, the relevant section should look similar to the following example:
% Map files
map +pdftex.map
map ...
map +psb.map

We repeat this step one more time for xdvi. The configuration file for xdvi
is called xdvi.cfg, the local branch is xdvi/config and lines indicating a
map file begin with dvipsmap:
% Map files
dvipsmap ps2pk.map
dvipsmap ...
dvipsmap psb.map

In addition to that, we have to make sure that an encoding definition for TeX
Base 1 encoding is provided as well. The configuration file for xdvi should
contain the following line:
% Tag Suffix Encoding name Encoding file
enc 8r TeXBase1Encoding 8r.enc

20 TUTORIAL 1. THE BASICS

The installation is now finished. All files left in the working directory will
not be used any more and may be deleted. Do not forget to update the file
hash tables by running texhash or an equivalent command!

1.6 Using the new fonts

Everything you need to know about using the fonts can be found in the La-
TeX font selection guide.7 The second chapter of this guide documents the
standard nfss commands used to switch fonts under LaTeX. Let us take a
look at some examples. To select Sabon at any point in a LaTeX file, we use
a command like:
\fontfamily{psb}\selectfont

Sabon provides two weights which are readily available using compact font
selection macros like \textbf and \bfseries. Larger font families may offer
more than two weights. To select a particular weight, we use the \fontseries
command in conjunction with the nfss series codes defined during the in-
stallation of the font family. Please refer to the code tables in appendix A for
a list of the most common nfss codes. To select the semibold (sb) weight
for example, we would use the following commands:
\fontseries{sb}\selectfont

Compact font switching macros such as \mdseries and \bfseries do not
switch to a fixed nfss font series, they use \mddefault and \bfdefault for
the regular and bold weight respectively. If we want to use semibold as the
default bold weight, for example, we simply redefine \bfdefault accordingly:
\renewcommand*{\bfdefault}{sb}

In order to use Sabon as the default roman typeface for the whole document,
we redefine \rmdefault in the preamble:
\renewcommand*{\rmdefault}{psb}

It is much more convenient to put the initialization of the font family into a
dedicated style file (sty), though. Our file sabon.sty might look like this:

1 \NeedsTeXFormat{LaTeX2e}
2 \ProvidesPackage{sabon}[2002/04/17 v1.0 Adobe Sabon]
3 \RequirePackage[T1]{fontenc}
4 \RequirePackage{textcomp}
5 \renewcommand*{\rmdefault}{psb}
6 \endinput

7http://www.ctan.org/tex-archive/macros/latex/doc/fntguide.pdf

http://www.ctan.org/tex-archive/macros/latex/doc/fntguide.pdf

1.6. USING THE NEW FONTS 21

Essentially, we redefine \rmdefault in order to use Sabon as the default
roman typeface for the whole document. In addition to that, we load the
fontenc package and switch to T1 encoding, which is more appropriate for
PostScript fonts than the OT1 encoding used by default. We also load the
textcomp package which provides a user interface for the symbols found in
TS1 encoding. This will allow us to access symbols such as ‘copyright’ or ‘reg-
istered’ (appendix B provides a list of all symbols supported by textcomp).
If the textcomp package is used in conjunction with inputenc, it is even
possible to enter most of these symbols directly in a LaTeX file.

There is one thing we have to keep in mind when switching to T1 en-
coding. The default encoding is a global setting that applies to all text fonts
used in a LaTeX file, unless the encoding is reset explicitly using the nfss
macro \fontencoding. It will affect the font family defined as \rmdefault,
but also the families set up as \sfdefault and \ttdefault. By default,
these are Computer Modern Sans Serif (cmss) and Computer Modern Type-
writer (cmtt). Using these fonts in conjunction with T1 encoding will pose
some problems most European TeX users are already well familiar with. It is
perfectly possible, provided that we use a suitable version of the Computer
Modern fonts. Choosing a suitable version, however, can be quite difficult.
We will discuss some typical issues related to that in the following section.

Alternatively, we could use some other T1 encoded sans serif and type-
writer typefaces available in PostScript format. For example, here is an en-
hanced version of sabon.sty using Helvetica (phv) and Courier (pcr):

1 \NeedsTeXFormat{LaTeX2e}
2 \ProvidesPackage{sabon}[2002/04/17 v1.0 Adobe Sabon with PS fonts]
3 \RequirePackage[T1]{fontenc}
4 \RequirePackage{textcomp}
5 \renewcommand*{\rmdefault}{psb}
6 \renewcommand*{\sfdefault}{phv}
7 \renewcommand*{\ttdefault}{pcr}
8 \endinput

This setup is certainly not the most fortunate one in terms of typography,
but it should be safe from a technical perspective. Helvetica and Courier are
part of the PostScript base fonts built into every Level 2 PostScript device.
TeX distributions usually do not ship with the original versions of these fonts
but they provide suitable replacements for them. Viewing dvi files on screen
or creating pdf files should not pose any problem in this case.

For our setup of Sabon, the next section is only relevant if you want
to use Computer Modern Sans Serif and Computer Modern Typewriter in
conjunction with Sabon. If you deploy different T1 encoded sans serif and
typewriter typefaces, which are available in PostScript format, all you need
to do is redefine \sffamily and \ttfamily in sabon.sty or in the preamble

22 TUTORIAL 1. THE BASICS

typeface fonts

name format

Computer Modern cm Metafont
cm, Blue Sky PostScript
cm, Bakoma PostScript, TrueType
ae virtual fonts
ze virtual fonts

European Computer Modern ec & tc Metafont
ec & tc, MicroPress PostScript
Tt2001 PostScript
cm-super PostScript

Latin Modern lm PostScript
European Modern em PostScript

Table 1.1: Computer Modern fonts and formats

of the respective LaTeX file as shown above for Helvetica and Courier. You
might still want to read the next section in this case because it discusses
one of the most frequently asked questions concerning fonts under TeX and
LaTeX.

1.7 Computer Modern and T1 encoding

The Computer Modern fonts designed for T1 and TS1 encoding are called ec
and tc fonts respectively, together known as European Computer Modern.
When switching to T1 encoding, we implicitly switch to these fonts. Note
that European Computer Modern, while being derived from Donald Knuth’s
original Computer Modern typefaces, is not simply a T1 encoded drop-in
replacement. Over the years it has evolved into an independent typeface. The
additional fonts created for the European Computer Modern family have been
subject to debate based on their design. Some of them are considered to be
typographically inferior to the original designs. From a technical perspective,
the problem with the European Computer Modern fonts is that, historically,
they have been available in Metafont format only. This implies that Post-
Script and pdf files will contain bitmap representations of these fonts when
we switch to T1 encoding. Bitmap fonts, however, have a fixed resolution
and so are not independent of the output device. They are not suitable for
on-screen display and pose a major obstacle in the usually PostScript-based
workflow of professional print shops, if they are tolerated at all.

Donald Knuth had designed the Computer Modern fonts in Metafont for-

1.7. COMPUTER MODERN AND T1 ENCODING 23

mat and with OT1 encoding in mind. Blue Sky Research and Y&Y developed
PostScript versions of these fonts later, which were donated to the public in
1997 and have been shipping with most TeX distributions ever since. While
these fonts work fine for PostScript and pdf files, they are not suitable for
tasks requiring letters not found in the English alphabet because their glyph
base is still restricted to OT1 encoding. Jörg Knappen’s European Computer
Modern fonts address this issue by providing a more comprehensive set of
glyphs, but they have in turn been subject to the limitations of Metafont. In
the following, I will briefly introduce several solutions which try to address
these problems. Most of them are trade-offs in one way or another. Tables
1.1 and 1.2 attempt to provide an overview of the major design variations
over the Computer Modern theme along with their implementations. These
tables are by no means exhaustive, there are even more fonts derived from
the original Computer Modern typefaces.

To work around the hyphenation problem of OT1 encoding while sticking
to the original Computer Modern fonts, there is a choice of two packages on
ctan which provide T1 encoded virtual fonts based on the original Computer
Modern family of fonts: the ae8 and the ze9 fonts. The ae fonts are built
on top of Computer Modern exclusively, but unfortunately they lack almost
a dozen T1 characters including double and single guillemets, which makes
their default setup unsuitable for all French and a lot of German texts. For
Computer Modern Typewriter, the situation is even worse. There is a supple-
mental package called aecompl which adds Metafont versions of the missing
characters, but that again brings up the problem we were trying to avoid in
the first place. A different complement called aeguill10 at least adds Post-
Script versions of the guillemets. An enhanced version of sabon.sty might
then look like this:

1 \NeedsTeXFormat{LaTeX2e}
2 \ProvidesPackage{sabon}[2002/04/17 v1.0 Adobe Sabon with AE]
3 \RequirePackage[T1]{fontenc}
4 \RequirePackage{textcomp}
5 \RequirePackage{aeguill}
6 \renewcommand*{\rmdefault}{psb}
7 \endinput

The ze fonts take a different approach to work around this problem: the miss-
ing characters are taken from standard PostScript fonts such as Times and
Helvetica. This means that there will be some typographical inconsistencies,
but we are safe from a technical point of view. While the ae fonts and the

8http://www.ctan.org/tex-archive/fonts/ae/
9http://www.ctan.org/tex-archive/fonts/zefonts/

10http://www.ctan.org/tex-archive/macros/latex/contrib/supported/
aeguill/

http://www.ctan.org/tex-archive/fonts/ae/
http://www.ctan.org/tex-archive/fonts/zefonts/
http://www.ctan.org/tex-archive/macros/latex/contrib/supported/aeguill/
http://www.ctan.org/tex-archive/macros/latex/contrib/supported/aeguill/

24 TUTORIAL 1. THE BASICS

fonts encodings

native supported

cm OT1 OT1
cm, Blue Sky OT1 OT1
ae OT1 T1, with composite glyphs
ze OT1 T1, with composite glyphs
ec, tc T1, TS1 T1, TS1
cm-super Adobe Standard T1, TS1, T2A, T2B, T2C, X2
lm font specific T1, TS1, LY1, QX1

Table 1.2: Computer Modern fonts and encodings

corresponding supplemental packages ship with most TeX distributions, you
might need to download the ze fonts from ctan. When using the ze fonts,
our enhanced version of sabon.sty would look like this:

1 \NeedsTeXFormat{LaTeX2e}
2 \ProvidesPackage{sabon}[2002/04/17 v1.0 Adobe Sabon with ZE]
3 \RequirePackage[T1]{fontenc}
4 \RequirePackage{textcomp}
5 \RequirePackage{zefonts}
6 \renewcommand*{\rmdefault}{psb}
7 \endinput

There is a more robust solution you might be interested in if you require T1
encoded Computer Modern fonts. Free PostScript versions of the European
Computer Modern fonts have been made available, although they might not
have made their way into every TeX distribution yet. As mentioned before,
one problem with OT1 encoded fonts is that they rely on composite glyphs
which break searching for words containing accented letters in pdf files.
Both the ae and the ze fonts, although they enable TeX to hyphenate words
containing accented letters properly, still suffer from this particular problem
as they are based on OT1 encoded fonts internally. It is highly advisable
to switch to a real T1 version of the Computer Modern fonts in PostScript
format. Such fonts are included in two independent packages: Péter Szabó’s
Tt200111 as well as Vladimir Volovich’s more recent cm-super12 package.
Both packages include PostScript fonts which are traced and post-processed
conversions of their Metafont counterparts.

Unless you know that a specific font you need is provided by the Tt2001
package only, go with the more advanced cm-super package which will bring
you as close to a real solution as you can possibly get when using the Eu-

11http://www.ctan.org/tex-archive/fonts/ps-type1/ec/
12http://www.ctan.org/tex-archive/fonts/ps-type1/cm-super/

http://www.ctan.org/tex-archive/fonts/ps-type1/ec/
http://www.ctan.org/tex-archive/fonts/ps-type1/cm-super/

1.7. COMPUTER MODERN AND T1 ENCODING 25

ropean Computer Modern fonts. Note, however, that it is a rather large
download. Since it includes a huge number of fonts, the compressed pack-
age is about 64mb in size. The cm-super fonts use Adobe Standard as their
native encoding, but the glyph set provided by these fonts includes Cyrillic
letters as well. In addition to T1 and TS1, cm-super supports the Cyrillic
encodings T2A, T2B, T2C, and X2. See the package documentation for in-
stallation instructions and answers to the most frequently asked questions.
Here is a version of our style file for use in conjunction with cm-super:

1 \NeedsTeXFormat{LaTeX2e}
2 \ProvidesPackage{sabon}[2002/04/17 v1.0 Adobe Sabon with CM-Super]
3 \RequirePackage[T1]{fontenc}
4 \RequirePackage{textcomp}
5 \RequirePackage{type1ec}
6 \renewcommand*{\rmdefault}{psb}
7 \endinput

Recently, yet another new implementation of Computer Modern has been
released to the public, the promising Latin Modern fonts created by Bo-
gusław Jackowski and Janusz M. Nowacki. Unlike Tt2001 and cm-super,
Latin Modern is derived from the original Computer Modern designs and
has been augmented with accented letters as well as other glyphs missing
from the very small glyph base of the original fonts. While the Latin Modern
fonts are younger than European Computer Modern, they are a parallel de-
velopment from a systematic perspective. Consequently, they are not affected
by the controversial design decisions underlying certain parts of the Euro-
pean Computer Modern family of fonts. They use a font specific encoding
by default and feature a glyph base suitable for T1, TS1, LY1 as well as the
Polish encoding QX1. Even though these fonts are still under development
they are already quite usable as of this writing (December 2004). Here is yet
another iteration of our style file for Sabon, combined with Latin Modern for
the sans serif and typewriter families:

1 \NeedsTeXFormat{LaTeX2e}
2 \ProvidesPackage{sabon}[2003/07/27 v1.0 Adobe Sabon with LM]
3 \RequirePackage[T1]{fontenc}
4 \RequirePackage{textcomp}
5 \RequirePackage{lmodern}
6 \renewcommand*{\rmdefault}{psb}
7 \endinput

Apart from these free fonts, there are also commercial offerings from Y&Y13

and MicroPress.14 Judging by the vendors’ websites, MicroPress offers Post-
Script versions of European Computer Modern while the European Modern
fonts by Y&Y are augmented PostScript versions of the original Computer

13http://www.yandy.com/em.htm
14http://www.micropress-inc.com/fonts/ecfonts/ecmain.htm

http://www.yandy.com/em.htm
http://www.micropress-inc.com/fonts/ecfonts/ecmain.htm

26 TUTORIAL 1. THE BASICS

Modern typeface. Please refer to the respective website for details and pricing.

Tutorial 2

Standard font sets

The \latinfamily shorthand is very convenient, but it is not designed to
cope with complex installation scenarios. Sooner or later you will probably
have more specific requirements or simply desire more control over the basics.
This will require using lower-level fontinst commands in most cases.

2.1 A verbose fontinst file

In this tutorial, we will essentially repeat the scenario discussed in the pre-
vious one. This time, however, we will employ lower-level commands. The
verbose driver file introduced here will also serve as a template for subse-
quent tutorials.

1 \input fontinst.sty
2 \needsfontinstversion{1.926}
3 \substitutesilent{bx}{b}

After loading fontinst and verifying the version we set up an alias that will
suppress a warning when the respective font is substituted. Why would we
want to set up this particular alias? Note that bx is the nfss code of the ‘bold
extended’ series. The LaTeX macros \textbf and \bfseries do not switch
to a fixed series, they use \bfdefault instead which defaults to bx. As long
as we are using the Computer Modern fonts this is fine since they actually
include bold extended fonts. For font families which do not, however, using
these macros would result in a warning. To avoid that, we would need to rede-
fine \bfdefault to a suitable weight. The problem here is that \bfdefault
is a global setting applying to all of LaTeX’s font families (\rmdefault,
\sfdefault, and \ttdefault), but it is not safe to assume that all of them
will offer the same weights. To avoid any need to redefine \bfdefault unless
we really want to, we set up an alias so that every request for ‘bold extended’

27

28 TUTORIAL 2. STANDARD FONT SETS

(bx) is substituted by ‘bold’ (b). Unless bold extended fonts are available,
simply think of bx as the default bold weight.1

The standard weight is selected by LaTeX in a similar way. The relevant
macro is called \mddefault and defaults to m. Make sure that the nfss series
m is always defined, either mapped to actual fonts or as a substitution. In
this case our font family provides regular-weight fonts so we will simply use
them for the m series. Some font families, however, are based on the main
weights ‘light’ and ‘demibold’ instead of ‘regular’ and ‘bold’. In this case, we
would either just map these weights to the m and b series directly or use the
proper nfss series codes (l and db) plus the following substitutions:
\substitutesilent{m}{l}
\substitutesilent{bx}{db}

Again, think of m as the default weight if regular-weight fonts are not avail-
able. Every font family should provide mappings for the nfss series m and
bx in the font definition file. If fonts matching these series exactly are not
available, use substitutions to ensure that the defaults for \mddefault and
\bfdefault will work without user intervention. Since \mddefault and \bfdefault
are overall settings applying to all of LaTeX’s families, redefining them ex-
plicitly may cause problems. Doing so should be an option, not a requirement.

4 \setint{smallcapsscale}{800}

The basic Sabon set we are dealing with offers upright and italic fonts but
no optical small caps. As a substitute, fontinst is capable of transparently
generating so-called mechanical or ‘faked’ small caps – as opposed to optical
or ‘real’ small caps which are actual glyphs found in a dedicated small caps
font. Mechanical small caps are generated by taking the tall caps of the font
and scaling them by a certain factor: 1000 means full size, 800 means 0.8.
Since Type 1 fonts scale linearly, scaling down tall caps implies that they will
appear lighter than the corresponding lowercase glyphs, thus disturbing the
color of the page. However, if they are too tall they do not mix well with the
lowercase alphabet.

Optical small caps usually match the x-height of the font. This is the
height of the lowercase alphabet without ascenders and descenders. They
blend in seamlessly with lowercase and mixed case text. Depending on the
typeface, this usually corresponds to a value in the range of 650–750. If you
scale down tall caps so that they match the x-height of the font, they will
appear too light in running text. Finding a suitable value for this is obviously
a trade-off. We are going to use fontinst’s default setting of 800 here but you

1This substitution is a default setting that fontinst will always silently include. We
could omit the respective line in this case, but if semibold fonts are available you might
prefer using those as the default bold weight.

2.1. A VERBOSE FONTINST FILE 29

might want to experiment with a value in the range of 750–800. For serious
applications of small caps we would need optical small caps, provided in a
dedicated small caps or in an expert font. For details on small caps and expert
sets, please refer to tutorial 3 and 5 respectively.

5 \setint{slant}{167}

The integer variable smallcapsscale is a known variable used by fontinst’s
encoding vectors. We could use it in conjunction with \latinfamily as well.
The variable slant is specific to our fontinst file. We define it for convenience
so that we can set the slant factor for all subsequent font transformations
globally. The slant factor defines how much the glyphs slope to the right.
It is a real number equivalent to the tangent of the slant angle. Fontinst
represents this number as an integer though, so we have to multiply the
tangent by 1000. The value 167 (~ 9.5°) is a reasonable default. Any value
significantly greater that 176 (~ 10°) is usually too much.

6 \recordtransforms{psb-rec.tex}

We start off with some basic font transformations. All reencoding and trans-
formation steps will be recorded in the file psb-rec.tex so that we can
automatically build a matching map file later. The environment recording
font transformations, which we open in line 6, will be closed at the very end
of the fontinst file, in line 35.

7 \transformfont{psbr8r}{\reencodefont{8r}{\fromafm{psbr8a}}}
8 \transformfont{psbri8r}{\reencodefont{8r}{\fromafm{psbri8a}}}
9 \transformfont{psbb8r}{\reencodefont{8r}{\fromafm{psbb8a}}}

10 \transformfont{psbbi8r}{\reencodefont{8r}{\fromafm{psbbi8a}}}

The fonts are reencoded from Adobe Standard (Fontname code 8a) to TeX
Base 1 encoding (8r). Please refer to the fontinst manual for an explanation
of the syntax of the individual commands used here and in the following.

11 \transformfont{psbro8r}{\slantfont{\int{slant}}\reencodefont{8r}{\fromafm{psbr8a}}}
12 \transformfont{psbbo8r}{\slantfont{\int{slant}}\reencodefont{8r}{\fromafm{psbb8a}}}

Like the \latinfamily shorthand, our fontinst file should create slanted
fonts as well. These need to be reencoded and, well, slanted. We are using
the slant variable defined in line 5 to set the slant factor. The raw, TeX
Base 1 encoded fonts are now prepared for the generation of virtual fonts.

13 \installfonts
14 \installfamily{T1}{psb}{}

The installation of a font family is enclosed in an environment which we open
in line 13 and close later in line 23. First of all, the font family we are about to
install has to be declared: we have Adobe Sabon and we are going to install it
in T1 encoding (Fontname code 8t). The third argument to \installfamily

30 TUTORIAL 2. STANDARD FONT SETS

corresponds to the second one of the \latinfamily command: it is used
to include code in the font definition file that will be expanded by LaTeX
whenever the font is selected. T1 will serve as our base encoding in LaTeX’s
text mode later. The \latinfamily command also provides OT1 (7t) and
TeX Base 1 encoded fonts. We will omit both encodings here as we do not
need them. While raw TeX Base 1 encoded fonts (8r) form the basis of all
virtual fonts, they are usually not deployed as such on the TeX level, and the
OT1 encoding is not suitable for PostScript fonts anyway. We will therefore
deliberately ignore it and focus on T1 and TS1 exclusively.

15 \installfont{psbr8t}{psbr8r,newlatin}{t1}{T1}{psb}{m}{n}{}

To create the individual virtual fonts, we use fontinst’s \installfont com-
mand. The first argument to \installfont is the virtual font we are going
to create, the second one is a list of files used to build this font. These can
be afm, mtx, or pl files, their suffix is omitted. If multiple fonts are provided,
\installfont does not overwrite any encoding slots when reading in addi-
tional files, it simply fills vacant slots if it finds suitable glyphs in the next
font. The metric file newlatin.mtx is an auxiliary file provided by fontinst
which should always be read when creating OT1 or T1 encoded text fonts.
The third argument is the file name of an encoding vector without the file
suffix, in this case t1.etx. The remaining arguments are written verbatim
to the font definition file and declare the respective font in a format that
the LaTeX font selection scheme (nfss) can process: T1 encoding, Adobe
Sabon2, medium3, normal (that is, upright or roman). The last argument is
only relevant if fonts with different design sizes are available. It is empty for
linearly scaled fonts.

16 \installfont{psbrc8t}{psbr8r,newlatin}{t1c}{T1}{psb}{m}{sc}{}

The small caps font is slightly different. Since we do not have any Type 1 font
containing optical small caps we need to ‘fake’ them by scaling the uppercase
alphabet and putting the scaled glyphs in the encoding slots of the lowercase
alphabet. Fortunately, we do not have to deal with the actual low-level glyph
scaling. We simply load t1c.etx, a special encoding vector which will take
care of that, using the value of smallcapsscale as the scaling factor.

17 \installfont{psbro8t}{psbro8r,newlatin}{t1}{T1}{psb}{m}{sl}{}
18 \installfont{psbri8t}{psbri8r,newlatin}{t1}{T1}{psb}{m}{it}{}

2LaTeX does not really care about the name of the font or the foundry. This argument
simply defines the code that identifies the font within the nfss.

3In fact, the more appropriate name would be regular because medium is a moderate
bold weight with the nfss code mb.

2.1. A VERBOSE FONTINST FILE 31

Since the slanting was already performed on the raw fonts, the virtual slanted
and the italic fonts are handled just like the upright ones. Now all regular
fonts are done and we can repeat this part (15–18) for the bold fonts:

19 \installfont{psbb8t}{psbb8r,newlatin}{t1}{T1}{psb}{b}{n}{}
20 \installfont{psbbc8t}{psbb8r,newlatin}{t1c}{T1}{psb}{b}{sc}{}
21 \installfont{psbbo8t}{psbbo8r,newlatin}{t1}{T1}{psb}{b}{sl}{}
22 \installfont{psbbi8t}{psbbi8r,newlatin}{t1}{T1}{psb}{b}{it}{}
23 \endinstallfonts

After that, we start adding virtual fonts for TS1 encoding. The TS1 encoding
complements T1 by providing additional glyphs such as currency signs and
other frequently used symbols. This encoding will not be used as the main
output encoding of our LaTeX files later. It is accessed exclusively by way of
macros provided by the textcomp package.

24 \installfonts
25 \installfamily{TS1}{psb}{}

Like newlatin.mtx, the file textcomp.mtx is an auxiliary metric file provided
by fontinst. It should always be added when creating TS1 encoded fonts. The
third argument in line 26, the encoding vector, refers to ts1.etx in this case:

26 \installfont{psbr8c}{psbr8r,textcomp}{ts1}{TS1}{psb}{m}{n}{}

Since the TS1 encoding contains symbols and figures only, the TS1 encoded
regular and small caps fonts are identical. Hence we do not need a TS1
encoded virtual small caps font, but we still have to instruct LaTeX where
to get the respective glyphs from. Otherwise the macros of the textcomp
package might not work properly whenever the active nfss shape is sc. To
do so, we use the \installfontas macro and ‘install’ the virtual font built
in line 26 once more, this time as the small caps shape. This will merely add
a line to the font definition file without creating an additional virtual font:

27 \installfontas{psbr8c}{TS1}{psb}{m}{sc}{}

The slanted and italic fonts are handled like the upright one:
28 \installfont{psbro8c}{psbro8r,textcomp}{ts1}{TS1}{psb}{m}{sl}{}
29 \installfont{psbri8c}{psbri8r,textcomp}{ts1}{TS1}{psb}{m}{it}{}

We repeat 26–29 for the bold fonts:
30 \installfont{psbb8c}{psbb8r,textcomp}{ts1}{TS1}{psb}{b}{n}{}
31 \installfontas{psbb8c}{TS1}{psb}{b}{sc}{}
32 \installfont{psbbo8c}{psbbo8r,textcomp}{ts1}{TS1}{psb}{b}{sl}{}
33 \installfont{psbbi8c}{psbbi8r,textcomp}{ts1}{TS1}{psb}{b}{it}{}

Finally, we close all environments and terminate:
34 \endinstallfonts
35 \endrecordtransforms
36 \bye

32 TUTORIAL 2. STANDARD FONT SETS

2.2 The latinfamily macro revisited

Note that our fontinst file is not strictly equivalent to the \latinfamily
macro but rather stripped down to the most useful parts with respect to
typical PostScript fonts. Essentially, we did not create any font description
files for the raw TeX Base 1 encoded fonts and we dropped OT1 encoding.
If you are curious, you should be able to reconstruct all the steps taken by
\latinfamily when looking at the log file created by fontinst while keeping
our file in mind. Here are the relevant lines from the log file after running
\latinfamily on the basic Sabon set. Only lines beginning with ‘INFO>
run’ are relevant in this context as they indicate lower-level macros used by
\latinfamily:
INFO> run \transformfont <psbr8r> from <psbr8a>
INFO> run \installrawfont <psbr8r><psbr8r,8r><8r><8r><psb><m><n>
INFO> run \installfont <psbr7t><psbr8r,newlatin><OT1><OT1><psb><m><n>
INFO> run \installfont <psbr8t><psbr8r,newlatin><T1><T1><psb><m><n>
INFO> run \installfont <psbr8c><psbr8r,textcomp><TS1><TS1><psb><m><n>
INFO> run \installfont <psbrc7t><psbr8r,newlatin><OT1c><OT1><psb><m><sc>
INFO> run \installfont <psbrc8t><psbr8r,newlatin><T1c><T1><psb><m><sc>
INFO> run \transformfont <psbro8r> from <psbr8r> (faking oblique)
INFO> run \installrawfont <psbro8r><psbro8r,8r><8r><8r><psb><m><sl>
INFO> run \installfont <psbro7t><psbro8r,newlatin><OT1><OT1><psb><m><sl>
INFO> run \installfont <psbro8t><psbro8r,newlatin><T1><T1><psb><m><sl>
INFO> run \installfont <psbro8c><psbro8r,textcomp><TS1><TS1><psb><m><sl>
INFO> run \transformfont <psbri8r> from <psbri8a>
INFO> run \installrawfont <psbri8r><psbri8r,8r><8r><8r><psb><m><it>
INFO> run \installfont <psbri7t><psbri8r,newlatin><OT1i><OT1><psb><m><it>
INFO> run \installfont <psbri8t><psbri8r,newlatin><T1i><T1><psb><m><it>
INFO> run \installfont <psbri8c><psbri8r,textcomp><TS1i><TS1><psb><m><it>
INFO> run \transformfont <psbb8r> from <psbb8a>
INFO> run \installrawfont <psbb8r><psbb8r,8r><8r><8r><psb><n>
INFO> run \installfont <psbb7t><psbb8r,newlatin><OT1><OT1><psb><n>
INFO> run \installfont <psbb8t><psbb8r,newlatin><T1><T1><psb><n>
INFO> run \installfont <psbb8c><psbb8r,textcomp><TS1><TS1><psb><n>
INFO> run \installfont <psbbc7t><psbb8r,newlatin><OT1c><OT1><psb><sc>
INFO> run \installfont <psbbc8t><psbb8r,newlatin><T1c><T1><psb><sc>
INFO> run \transformfont <psbbo8r> from <psbb8r> (faking oblique)
INFO> run \installrawfont <psbbo8r><psbbo8r,8r><8r><8r><psb><sl>
INFO> run \installfont <psbbo7t><psbbo8r,newlatin><OT1><OT1><psb><sl>
INFO> run \installfont <psbbo8t><psbbo8r,newlatin><T1><T1><psb><sl>
INFO> run \installfont <psbbo8c><psbbo8r,textcomp><TS1><TS1><psb><sl>
INFO> run \transformfont <psbbi8r> from <psbbi8a>
INFO> run \installrawfont <psbbi8r><psbbi8r,8r><8r><8r><psb><it>
INFO> run \installfont <psbbi7t><psbbi8r,newlatin><OT1i><OT1><psb><it>
INFO> run \installfont <psbbi8t><psbbi8r,newlatin><T1i><T1><psb><it>
INFO> run \installfont <psbbi8c><psbbi8r,textcomp><TS1i><TS1><psb><it>

This listing is a complete summary of what the \latinfamily macro does
in this case, broken down into lower-level commands. The order of the com-
mands differs slightly from our file, because the \transformfont calls are
not grouped at the beginning but rather used ‘on demand’ for each shape.

2.2. THE LATINFAMILY MACRO REVISITED 33

This difference is irrelevant from a technical point of view. \transformfont
must obviously be called before \installfont or \installrawfont tries to
use the transformed fonts, but the exact location does not matter. Since we
did not create any font description files for TeX Base 1 encoding, we did not
use the \installrawfont macro in our fontinst file. This macro does not
build a virtual font but rather sets up a raw, TeX Base 1 encoded font for
use under LaTeX.

Here are some crucial points we would have to keep in mind when writing
a fontinst file that does exactly what \latinfamily would do: the macro
\installrawfont is used in conjunction with 8r.mtx instead of newlatin.
mtx, the encoding file is obviously 8r.etx in this case. Creating OT1 encoded
virtual fonts requires newlatin.mtx and ot1.etx. You will also notice that,
in addition to ot1c.etx and t1c.etx, fontinst used encoding files like ot1i.
etx and t1i.etx when creating italic virtual fonts. For T1 encoding, t1.etx
and t1i.etx are equivalent (t1i.etx simply reads t1.etx internally), hence
we did not bother using t1i.etx in our fontinst file. The situation is the same
with ts1.etx and ts1i.etx. For OT1 encoding, however, the difference is
crucial because this encoding differs depending on the shape: the upright
shape features a dollar symbol while the italic shape puts an italic pound
symbol in the slot of the dollar. This is yet another idiosyncrasy of OT1.

34 TUTORIAL 2. STANDARD FONT SETS

Tutorial 3

Optical small caps and hanging
figures

When choosing a new typeface, bear in mind that optical small caps and
hanging figures are not available for all commercial PostScript fonts. If they
are available for a certain typeface, they are usually provided separately,
either in a sc & osf or in an expert font package. We will deal with the
former case in this tutorial, the latter will be discussed in tutorial 5. Suppose
we have acquired the Sabon sc & osf package to complement our base install
of Sabon. This package provides four additional fonts: a regular sc & osf, an
italic osf, a bold osf, and a bold italic osf font. These fonts will provide us
with hanging figures for all shapes in both weights. Small caps are available
for the regular weight only; we will still have to make do with mechanical
small caps for the bold weight. Note that Adobe does not include a separate
regular-weight upright osf font. The respective figures are to be found in the
small caps font instead. Our original file set looks like this:
sar_____.afm sai_____.afm sab_____.afm sabi_____.afm
sar_____.inf sai_____.inf sab_____.inf sabi_____.inf
sar_____.pfb sai_____.pfb sab_____.pfb sabi_____.pfb
sar_____.pfm sai_____.pfm sab_____.pfm sabi_____.pfm

sarsc___.afm saiof___.afm sabof___.afm sabio___.afm
sarsc___.inf saiof___.inf sabof___.inf sabio___.inf
sarsc___.pfb saiof___.pfb sabof___.pfb sabio___.pfb
sarsc___.pfm saiof___.pfm sabof___.pfm sabio___.pfm

After renaming and choosing the required files, we could start off with the
following set of files:
psbr8a.afm psbri8a.afm psbb8a.afm psbbi8a.afm
psbr8a.pfb psbri8a.pfb psbb8a.pfb psbbi8a.pfb

psbrc8a.afm psbrij8a.afm psbbj8a.afm psbbij8a.afm
psbrc8a.pfb psbrij8a.pfb psbbj8a.pfb psbbij8a.pfb

35

36 TUTORIAL 3. OPTICAL SMALL CAPS AND HANGING FIGURES

But before we begin, let us take a closer look at the encoding of the fonts. We
will have to deal with some peculiarities characteristic for typical sc & osf
sets. Taking a look at psbr8a.afm, you will see that in Adobe Standard
encoding, which is the native encoding of all fonts of the Sabon family, the
figures are encoded as ‘zero’, ‘one’, ‘two’ and so on:
C 48 ; WX 556 ; N zero ; B 52 -15 504 705 ;
C 49 ; WX 556 ; N one ; B 91 0 449 705 ;
C 50 ; WX 556 ; N two ; B 23 0 507 705 ;

Compare that to the glyph names of figures in an expert font:
C 48 ; WX 511 ; N zerooldstyle ; B 40 -14 480 436 ;
C 49 ; WX 328 ; N oneoldstyle ; B 35 -3 294 425 ;
C 50 ; WX 440 ; N twooldstyle ; B 44 -3 427 436 ;

The different glyph names are appropriate because regular PostScript fonts
usually come with lining figures by default while expert fonts feature hanging
(‘old style’) figures. Now let us take a look at psbrc8a.afm:
C 48 ; WX 556 ; N zero ; B 41 -15 515 457 ;
C 49 ; WX 556 ; N one ; B 108 0 448 442 ;
C 50 ; WX 556 ; N two ; B 72 0 512 457 ;

When comparing these glyph names to the actual outlines in psbrc8a.pfb,1

we can see that this font in fact comes with hanging (‘old style’) figures even
though the figures are labeled using the standard names. This is the case
with all osf fonts included in the sc & osf package. The reason why this
complicates the installation procedure will become clear when we take a look
at the TeX side. In T1 encoding, for example, the figures are (essentially)
encoded like this by default:
\setslot{zero}\endsetslot
\setslot{one}\endsetslot
\setslot{two}\endsetslot

While TS1 encoding (essentially) references them as follows:
\setslot{zerooldstyle}\endsetslot
\setslot{oneoldstyle}\endsetslot
\setslot{twooldstyle}\endsetslot

We face a similar problem with small caps. The lowercase letters in psbr8a.
afm are labeled like this:
C 97 ; WX 500 ; N a ; B 42 -15 465 457 ;
C 98 ; WX 556 ; N b ; B 46 -15 514 764 ;
C 99 ; WX 444 ; N c ; B 25 -15 419 457 ;

Expert fonts, which provide small caps as well but do not need to follow
Adobe Standard encoding, encode small caps as follows:

1The correct name of this font is psbrcj8a, but we will stick to the naming proposed
in Fontname’s adobe.map here.

3.1. THE FONTINST FILE 37

C 97 ; WX 457 ; N Asmall ; B -15 -3 467 446 ;
C 98 ; WX 481 ; N Bsmall ; B 34 -3 437 437 ;
C 99 ; WX 501 ; N Csmall ; B 38 -14 477 448 ;

Our font psbrc8a features small caps in place of lowercase letters but it has
to follow Adobe Standard encoding:
C 97 ; WX 556 ; N a ; B 10 0 546 509 ;
C 98 ; WX 556 ; N b ; B 49 0 497 490 ;
C 99 ; WX 556 ; N c ; B 49 -12 512 502 ;

This is one of the tricky parts when installing typical sc & osf sets. Fontinst’s
encoding vectors expect distinct names for distinct glyphs while the metric
files of sc & osf fonts do not provide unique names for optical small caps
and hanging figures. The other idiosyncrasy of sc & osf sets is specific to a
few font foundries including Adobe: there is no upright osf font so we have
to take the upright hanging figures from the small caps font when building
virtual fonts. If you are installing a font family featuring an upright osf font
you obviously do not need to exchange any glyphs to get upright hanging
figures.

3.1 The fontinst file

In the following, we will use the fontinst file introduced in the last tutorial
as a template and add the features we need. We will create two LaTeX
font families: psb and psbj. The former will provide lining figures while the
latter will use the hanging figures of the osf fonts instead. Both families will
incorporate optical small caps where available. In the following, all comments
concerning the fontinst file will be restricted to those aspects diverging from
our template. Please refer to the previous tutorial for a commentary on the
original template.

1 \input fontinst.sty
2 \needsfontinstversion{1.926}
3 \substitutesilent{bx}{b}
4 \setint{smallcapsscale}{800}
5 \setint{slant}{167}
6 \recordtransforms{psb-rec.tex}
7 \transformfont{psbr8r}{\reencodefont{8r}{\fromafm{psbr8a}}}
8 \transformfont{psbri8r}{\reencodefont{8r}{\fromafm{psbri8a}}}
9 \transformfont{psbb8r}{\reencodefont{8r}{\fromafm{psbb8a}}}

10 \transformfont{psbbi8r}{\reencodefont{8r}{\fromafm{psbbi8a}}}

The first couple of lines of our template remain unchanged.
11 \transformfont{psbrc8r}{\reencodefont{8r}{\fromafm{psbrc8a}}}
12 \transformfont{psbrij8r}{\reencodefont{8r}{\fromafm{psbrij8a}}}
13 \transformfont{psbbj8r}{\reencodefont{8r}{\fromafm{psbbj8a}}}
14 \transformfont{psbbij8r}{\reencodefont{8r}{\fromafm{psbbij8a}}}

38 TUTORIAL 3. OPTICAL SMALL CAPS AND HANGING FIGURES

After the reencodings inherited form our template (7–10), we insert the new
fonts which need to be reencoded as well (11–14).

15 \transformfont{psbro8r}{\slantfont{\int{slant}}\reencodefont{8r}{\fromafm{psbr8a}}}
16 \transformfont{psbbo8r}{\slantfont{\int{slant}}\reencodefont{8r}{\fromafm{psbb8a}}}
17 \transformfont{psbrco8r}{\slantfont{\int{slant}}\reencodefont{8r}{\fromafm{psbrc8a}}}
18 \transformfont{psbboj8r}{\slantfont{\int{slant}}\reencodefont{8r}{\fromafm{psbbj8a}}}

In addition to that, we need slanted versions of the new fonts. Slanting the
small caps font (17) may seem a bit unusual given that we do not want
to create a slanted small caps shape. But since the regular-weight hanging
figures are found in the small caps font, we need a slanted version of that
as well to provide matching figures for the slanted shape of the psbj family
later.

19 \installfonts
20 \installfamily{T1}{psb}{}
21 \installfont{psbr8t}{psbr8r,newlatin}{t1}{T1}{psb}{m}{n}{}

Building the virtual font for the upright shape (21) is straightforward and in
line with our driver template. We depart from our template as we approach
the tricky part mentioned above, the font psbrc8r which contains both small
caps and hanging figures. Before we get to the problem of hanging versus
lining figures, let us consider a basic case first. To install a text font featuring
optical small caps, such as psbrc8r, we would use the following line:
\installfont{psbrc8t}{psbrc8r,newlatin}{t1}{T1}{psb}{m}{sc}{}

We need the encoding file t1.etx in this case since the small caps are labeled
like ordinary lowercase glyphs in psbrc8a. The encoding file t1c.etx would
be inappropriate because it expects the small caps to be labeled as ‘Asmall’,
‘Bsmall’, and ‘Csmall’. If it does not find any matching glyphs, it ‘fakes’ them
by scaling down the tall caps of the respective font – which is why we used
t1c.etx in tutorial 2. The problem is that psbrc8r also contains hanging
figures whereas we want psb to be a consistent family featuring lining figures
throughout. Fortunately, we can leverage virtual fonts to combine the glyphs
of several raw fonts. In this case, we take the lining figures from psbr8r:

22 \installfont{psbrc8t}{psbrc8r,psbr8r suffix lining,newlatin}{lining,t1}{T1}{psb}{m}{sc}{}

We read psbrc8r first and psbr8r after that. Note that \installfont does
not overwrite any encoding slots when processing additional metric files, it
simply fills vacant slots if it finds suitable glyphs in the next font. If the glyphs
had unique names, we could simply take the (lining) figures from psbr8r
while the rest of the glyphs including the small caps would be provided by
psbrc8r. But the figures in psbrc8r are labeled just like those in psbr8r.
How is fontinst supposed to distinguish between the two sets? This is where
fontinst’s suffix option comes into play. This option will add the suffix

3.1. THE FONTINST FILE 39

‘lining’ to the names of all glyphs in psbr8r. Our encoding vector t1.etx,
however, does not contain any glyph names ending in ‘lining’. The figures
are encoded as ‘zero’, ‘one’, ‘two’. Hence we need to create an additional file
to get the figures right – the encoding file lining.etx:
\relax
\encoding
\setcommand\digit#1{#1lining}
\endencoding
\endinput

So how does all of this fit together? To understand this approach, we need
to take another look at how t1.etx defines the encoding slots for all figures:
\setslot{\digit{one}}\endsetslot
\setslot{\digit{two}}\endsetslot
\setslot{\digit{three}}\endsetslot

The glyph names are not given verbatim in t1.etx, they are passed to the
\digit macro as an argument. The default definition of this macro as given
in t1.etx looks like this:
\setcommand\digit#1{#1}

This means that the glyph labeled ‘one’ in the afm file will end up in the
encoding slot for the numeral one in the virtual font. Our encoding file
lining.etx, which is read before t1.etx, predefines the \digit macro as
follows:
\setcommand\digit#1{#1lining}

Since fontinst’s \setcommand macro will only define a command if it has not
been defined yet, this is the definition which will be used when t1.etx is
processed. With all of that in mind, let us go over line 22 again:
\installfont{psbrc8t}{psbrc8r,psbr8r suffix lining,newlatin}{lining,t1}{T1}{psb}{m}{sc}{}

Because of lining.etx, fontinst expects all figures to be labeled in the form
‘zerolining’, ‘onelining’, ‘twolining’ and so on. All the other glyph names
defined by the encoding file t1.etx remain unchanged. When processing the
metric files, fontinst will consider the glyphs found in psbrc8r first, but it
will skip the figures. When processing psbr8r after that, it will skip almost
all of the glyphs it finds in this font since appending the string lining to
their names has effectively rendered them invalid. The only exception are
the figures which now match the format defined in lining.etx. Hence the
virtual font psbrc8t will be based on psbrc8r coupled with the figures of
psbr8r.

23 \installfont{psbri8t}{psbri8r,newlatin}{t1}{T1}{psb}{m}{it}{}
24 \installfont{psbro8t}{psbro8r,newlatin}{t1}{T1}{psb}{m}{sl}{}

40 TUTORIAL 3. OPTICAL SMALL CAPS AND HANGING FIGURES

The installation of the remaining fonts does not differ from our template. We
continue with the bold fonts:

25 \installfont{psbb8t}{psbb8r,newlatin}{t1}{T1}{psb}{b}{n}{}
26 \installfont{psbbc8t}{psbb8r,newlatin}{t1c}{T1}{psb}{b}{sc}{}

Optical small caps are available for the regular weight only. For the bold
series we have to make do with ‘faked’ small caps, hence we use the encoding
file t1c.etx in line 26. The remaining lines for T1 encoding do not require
any adjustments either:

27 \installfont{psbbi8t}{psbbi8r,newlatin}{t1}{T1}{psb}{b}{it}{}
28 \installfont{psbbo8t}{psbbo8r,newlatin}{t1}{T1}{psb}{b}{sl}{}
29 \endinstallfonts

That’s it for T1 encoding. We continue with TS1:
30 \installfonts
31 \installfamily{TS1}{psb}{}

While TS1 is primarily intended for symbols complementing T1, it includes
hanging figures as well. As the only way to use them is loading the textcomp
package and typing cumbersome text commands like \textzerooldstyle
(see appendix B.2), it is not very useful to have them in TS1. Our psbj
family will make them the default figures anyway so that they are readily
available. But we are being picky. Let us see how we can put hanging figures
in TS1/psb as well. As mentioned above, the problem is that the osf fonts
use regular glyph names for the hanging figures while fontinst’s TS1 encoding
vector references them by ‘oldstyle’ names. Hence we have to turn regular
figures – which are in fact hanging figures not encoded as such – into hanging
figures. For the upright fonts, the hanging figures are in fact in the small caps
font which complicates the installation even more. But we have dealt with
this problem before and the approach should look familiar:

32 \installfont{psbr8c}{psbr8r,psbrc8r suffix oldstyle,textcomp}{ts1}{TS1}{psb}{m}{n}{}

This time, we do not need an additional encoding file because ts1.etx uses
‘oldstyle’ names by default. All we need to do in order to ensure unique glyph
names is adding the string oldstyle to the glyphs in psbrc8r when building
the virtual font.

33 \installfontas{psbr8c}{TS1}{psb}{m}{sc}{}
34 \installfont{psbro8c}{psbro8r,psbrco8r suffix oldstyle,textcomp}{ts1}{TS1}{psb}{m}{sl}{}

The slanted shape is handled in a similar way because it relies on the figures
in the small caps font as well. For the remaining virtual fonts the installation
is simpler. Since we have raw osf fonts with hanging figures, all we need to
do is rename these figures for TS1 encoding:

35 \installfont{psbri8c}{psbri8r,psbrij8r suffix oldstyle,textcomp}{ts1}{TS1}{psb}{m}{it}{}
36 \installfont{psbb8c}{psbb8r,psbbj8r suffix oldstyle,textcomp}{ts1}{TS1}{psb}{b}{n}{}

3.1. THE FONTINST FILE 41

37 \installfontas{psbb8c}{TS1}{psb}{b}{sc}{}
38 \installfont{psbbo8c}{psbbo8r,psbboj8r suffix oldstyle,textcomp}{ts1}{TS1}{psb}{b}{sl}{}
39 \installfont{psbbi8c}{psbbi8r,psbbij8r suffix oldstyle,textcomp}{ts1}{TS1}{psb}{b}{it}{}
40 \endinstallfonts

This is the first half of our fontinst file. Compared to the template introduced
in the previous tutorial it adds optical small caps to T1 and hanging figures to
TS1 encoding. We will now create an additional font family (psbj) featuring
hanging figures by default.

41 \installfonts
42 \installfamily{T1}{psbj}{}
43 \installfont{psbrj8t}{psbr8r,psbrc8r suffix oldstyle,newlatin}{t1j}{T1}{psbj}{m}{n}{}

In order to incorporate hanging figures, we need to exchange the figure sets
of some fonts again. There is no need to create an additional encoding file
this time. Fontinst ships with an encoding vector called t1j.etx which uses
‘oldstyle’ names by default. We use t1j.etx and add an ‘oldstyle’ suffix to
the glyph names of the small caps font to combine psbr8r with the figures
in psbrc8r. If you are installing a font package which includes an upright
osf font, simply use that and build the virtual font as shown for the italic
osf font in line 46.

44 \installfont{psbrcj8t}{psbrc8r,newlatin}{t1}{T1}{psbj}{m}{sc}{}

The small caps font does not require any modifications this time. The raw
font already contains hanging figures so we can use it as-is. Since psbrc8r
uses standard glyph names for small caps and hanging figures, we use the
regular encoding vector t1.etx.

45 \installfont{psbroj8t}{psbro8r,psbrco8r suffix oldstyle,newlatin}{t1j}{T1}{psbj}{m}{sl}{}

The slanted shape is handled like the upright one: we combine psbro8r with
the slanted hanging figures provided by psbrco8r.

46 \installfont{psbrij8t}{psbrij8r,newlatin}{t1}{T1}{psbj}{m}{it}{}

Building the italic virtual font is trivial because we have an italic osf font
with easily accessible hanging figures in the standard slots (note the regular
encoding vector t1.etx). Since there are osf fonts for all bold shapes as
well, they do not require any special modifications either. We simply use the
appropriate osf fonts instead of the fonts from the basic Sabon package:

47 \installfont{psbbj8t}{psbbj8r,newlatin}{t1}{T1}{psbj}{b}{n}{}
48 \installfont{psbbcj8t}{psbbj8r,newlatin}{t1c}{T1}{psbj}{b}{sc}{}

We create ‘faked’ bold small caps using the encoding file t1c.etx because
there is no bold small caps font.

49 \installfont{psbboj8t}{psbboj8r,newlatin}{t1}{T1}{psbj}{b}{sl}{}
50 \installfont{psbbij8t}{psbbij8r,newlatin}{t1}{T1}{psbj}{b}{it}{}
51 \endinstallfonts

42 TUTORIAL 3. OPTICAL SMALL CAPS AND HANGING FIGURES

Since TS1 is not a regular text encoding, we do not need to create TS1
encoded fonts for the psbj family. Any TS1/psbj fonts would be identical to
TS1/psb anyway. To ensure that the textcomp package works with the psbj
family as well, however, we still have to create a suitable font definition file
for TS1/psbj:

52 \installfonts
53 \installfamily{TS1}{psbj}{}

We use \installfontas to ‘install’ the TS1 encoded virtual fonts of the psb
family as TS1/psbj. As mentioned before, this will merely add some lines to
the font definition file without creating any additional virtual fonts:

54 \installfontas{psbr8c}{TS1}{psbj}{m}{n}{}
55 \installfontas{psbr8c}{TS1}{psbj}{m}{sc}{}
56 \installfontas{psbro8c}{TS1}{psbj}{m}{sl}{}
57 \installfontas{psbri8c}{TS1}{psbj}{m}{it}{}
58 \installfontas{psbb8c}{TS1}{psbj}{b}{n}{}
59 \installfontas{psbb8c}{TS1}{psbj}{b}{sc}{}
60 \installfontas{psbbo8c}{TS1}{psbj}{b}{sl}{}
61 \installfontas{psbbi8c}{TS1}{psbj}{b}{it}{}
62 \endinstallfonts
63 \endrecordtransforms
64 \bye

Now we have a fully functional setup of psb and psbj in T1 and TS1 encod-
ing.

3.2 An extended style file

With two Sabon families at hand, we might want to update sabon.sty to
make them easily accessible. We add the two options lining and oldstyle
for the respective font families (6, 7) and make hanging figures the default
(8). Loading the package with the option oldstyle or without any option
will set up psbj as the default roman family while using the lining option
will make it select psb instead:

1 \NeedsTeXFormat{LaTeX2e}
2 \ProvidesPackage{sabon}[2002/05/12 v1.1 Adobe Sabon]
3 \RequirePackage[T1]{fontenc}
4 \RequirePackage{textcomp}
5 \RequirePackage{nfssext}
6 \DeclareOption{lining}{\renewcommand*{\rmdefault}{psb}}
7 \DeclareOption{oldstyle}{\renewcommand*{\rmdefault}{psbj}}
8 \ExecuteOptions{oldstyle}
9 \ProcessOptions*

10 \endinput

It might also be handy to have dedicated text commands to switch between
the two figure sets. Since such commands will need to work with all font
families anyway, let us put them in a stand-alone style file and load it in

3.2. AN EXTENDED STYLE FILE 43

sabon.sty (5). The style file nfssext.sty might look like this:
1 \NeedsTeXFormat{LaTeX2e}
2 \ProvidesPackage{nfssext}[2003/03/14 v1.2 Experimental NFSS Extensions]
3 \newcommand*{\exfs@tempa}{}
4 \newcommand*{\exfs@tempb}{}
5 \newcommand*{\exfs@try@family}[1]{%
6 \let\exfs@tempa\relax
7 \begingroup
8 \fontfamily{#1}\try@load@fontshape
9 \expandafter\ifx\csname\curr@fontshape\endcsname\relax

10 \PackageWarning{nfssext}{%
11 Font family ’\f@encoding/#1’ not available\MessageBreak
12 Ignoring font switch}%
13 \else
14 \gdef\exfs@tempa{\fontfamily{#1}\selectfont}%
15 \fi
16 \endgroup
17 \exfs@tempa}

This is an outline for a command that makes use of a few nfss internals to
switch to a specific family if and only if it is available. Essentially, we try to
load the requested family in the current encoding (8). If this succeeds, we set
up a macro (14) to be expanded later that will actually switch font families;
if not, we print a warning message (10–12) and do nothing.

18 \def\exfs@get@base#1#2#3#4\@nil{#1#2#3}%
19 \DeclareRobustCommand{\lnstyle}{%
20 \not@math@alphabet\lnstyle\relax
21 \exfs@try@family{\expandafter\exfs@get@base\f@family\@nil}}
22 \DeclareRobustCommand{\osstyle}{%
23 \not@math@alphabet\osstyle\relax
24 \exfs@try@family{\expandafter\exfs@get@base\f@family\@nil j}}

The macros \lnstyle and \osstyle switch to lining and hanging (‘old style’)
figures respectively. They are employed like \bfseries or \itshape. Inter-
nally, they will take the first three letters of the current nfss font family
name (18), append a letter to it where appropriate (none for lining figures,
j for hanging figures), and call \exfs@try@family. Even though this mech-
anism is rather simple-minded, it should work just fine for all fonts set up
according to the Fontname scheme.

25 \DeclareTextFontCommand{\textln}{\lnstyle}
26 \DeclareTextFontCommand{\textos}{\osstyle}
27 \endinput

The corresponding text commands, \textln and \textos, take one manda-
tory argument and can be employed like \textbf or \textit.

44 TUTORIAL 3. OPTICAL SMALL CAPS AND HANGING FIGURES

3.3 The fonts supplied with TeX

The standard PostScript fonts supplied with the most common TeX distribu-
tions do not include optical small caps, nor do they include hanging figures.
The default typeface of both plain TeX and LaTeX however, Computer Mod-
ern Roman, does include such glyphs. Unfortunately, the design of the small
caps is flawed. Their height corresponds to what you usually end up with
when creating mechanical small caps. Being too tall, these small caps hardly
blend in with lowercase text at all, even though their color matches that of
the lowercase alphabet.

Hanging figures are included in Computer Modern as well, but they are
hidden in some of the math fonts. The only way to use them with the default
setup is rather cumbersome: the macro \oldstylenums will take the numbers
to be typeset as hanging figures as an argument. There is a set of virtual fonts
for the European Computer Modern fonts which make these hanging figures
the default in TeX’s text mode so that they are readily available. These
fonts are provided in the eco package available from ctan.2 Please refer
to the package documentation for installation and usage instructions. Since
this package essentially consists of a set of virtual fonts, it should also work
in conjunction with the cm-super fonts mentioned in section 1.7. Note that
all of this applies to TeX’s text mode only. In math mode, TeX will use an
independant set of fonts.

2http://www.ctan.org/tex-archive/fonts/eco/

http://www.ctan.org/tex-archive/fonts/eco/

Tutorial 4

The euro currency symbol

While the euro symbol has been supported by LaTeX for quite some time –
it is included in TS1 encoding and the textcomp package provides the corre-
sponding text command \texteuro – the real problem is getting fonts that
provide this glyph and setting them up accordingly. You might want to read
this tutorial even if you are not affected by this particular issue, because
it deals with some generic encoding problems that you may encounter in a
different context as well. There is a bit more to updating a font than drawing
a euro symbol and putting it in the font. It has to be properly encoded as
well. Since the euro symbol is not defined in Adobe Standard encoding, it can
normally only be included as an uncoded glyph in regular PostScript text
fonts. An uncoded glyph is only accessible after reencoding and assigning it
to a valid encoding slot. Some font foundries decided to follow this path in
order to conform to Adobe Standard encoding. Others prefer to drop some
supposedly rarely used glyph and put the euro symbol in its encoding slot
instead. While this violates the encoding standard, it can be more convenient
under certain circumstances. In the following, we will explore ways to handle
both situations cleanly. Finally, we will learn how to take the euro symbol
from an external font if none is provided by the text font itself.

4.1 Uncoded euro symbol

While Adobe used to be rather inattentive to the problem at first, the foundry
is finally updating their typeface portfolio by gradually adding matching euro
symbols to their fonts – a process that has been promoted by the introduc-
tion of the OpenType font format. Recent releases of Adobe Garamond, for
example, already ship with matching euro symbols. A quick look at the afm
file shows that in this case, the foundry decided to handle the encoding prob-

45

46 TUTORIAL 4. THE EURO CURRENCY SYMBOL

lem in a strict manner. The new symbol is correctly labeled as ‘Euro’ but it
is not encoded by default as that would violate Adobe Standard encoding.
An encoding slot number of -1 means that the glyph is uncoded:
C -1 ; WX 572 ; N Euro ; B -13 -14 542 640 ;

In order to access it, we need to reencode the font and assign the glyph ‘Euro’
to a valid encoding slot. The standard procedure we have been pursuing
in this guide involves reencoding all fonts to TeX Base 1 encoding anyway
precisely because of cases like this one. By reencoding all fonts to TeX Base 1
encoding we ensure that all glyphs our virtual fonts rely on are properly
encoded in the raw fonts we use as their basis. As of fontinst 1.9, the encoding
file 8r.etx includes the euro symbol. Note that you also need a matching
version of 8r.enc for dvips and pdfTeX. This file is distributed separately
and not included in the fontinst release.1 Since reencoding all text fonts to
TeX Base 1 encoding is part of our regular installation routine anyway, the
fontinst file does not need any adjustments:
\transformfont{padr8r}{\reencodefont{8r}{\fromafm{padr8a}}}

The reencoding step will ensure that the euro symbol is available in all TeX
Base 1 encoded raw fonts. We can use them to build TS1 encoded virtual
fonts as usual:
\installfont{padr8c}{padr8r,textcomp}{ts1}{TS1}{pad}{m}{n}{}

After installing the fonts and all auxiliary files, the euro symbol will be
available as \texteuro when loading the textcomp package.

4.2 Euro symbol encoded as currency symbol

Bitstream was one of the first type foundries to update their font collection
and add a matching euro symbol to all fonts. When looking at the fonts, the
first thing we notice is that the foundry decided to encode the euro symbol
as the generic currency symbol ‘¤’. The reason for this is that you can access
the symbol without reencoding the font, which can be very difficult on some
systems. Since the generic currency symbol is hardly ever used anyway, it is no
surprise that this particular glyph was dropped. We could install Bitstream
fonts as usual and use \textcurrency instead of \texteuro to access the
euro symbol, but that would imply keeping the idiosyncrasies of a given font
in mind while writing, and modifying the text when changing the typeface –
not quite what one would expect when working with a high-level markup
language like LaTeX.

1http://www.ctan.org/tex-archive/info/fontname/8r.enc

http://www.ctan.org/tex-archive/info/fontname/8r.enc

4.2. EURO SYMBOL ENCODED AS CURRENCY SYMBOL 47

When taking a closer look at the pfb and afm files, we can see that the
fonts in fact contain two euro symbols. The first one is found in encoding slot
168, that is, it is encoded as the currency symbol and labeled accordingly. To
verify that, we have to take a look at the pfb files in a font editor. Since the
euro symbol is both encoded and labeled just like a currency symbol, there
is no way to tell the difference by looking at the afm file only:
C 168 ; WX 556 ; N currency ; B 6 -12 513 697 ;

The other one is uncoded (slot -1) and labeled as ‘Euro’:
C -1 ; WX 556 ; N Euro ; B 6 -12 513 697 ;

If we want a readily available euro symbol (and one that is available as such),
we have two options in this case. Either we reencode the font and assign the
uncoded euro symbol to a valid encoding slot or we use the already encoded
euro symbol found in the slot of the currency symbol and move it to the
proper encoding slot. The former case was already discussed above, let us
now investigate the latter.

The easiest way to move the glyph to a different slot is resetting it when
creating the TS1 encoded virtual fonts. This requires that the glyph is already
encoded (in any slot) in the raw fonts serving as their basis. Since the TeX
Base 1 encoding we use for all base fonts includes both the euro and the
generic currency symbol this should not pose any problems. The low-level
commands which reset the glyph go in a dedicated metric file, reseteur.mtx,
which we have to create ourselves:

1 \relax
2 \metrics
3 \resetglyph{euro}
4 \glyph{currency}{1000}
5 \endsetglyph
6 \setleftrightkerning{euro}{currency}{1000}
7 \unsetglyph{currency}
8 \endmetrics

We reset the glyph ‘euro’ based on the glyph ‘currency’ scaled to its full
size in line 3–5, adjust the kerning on either side of ‘euro’ to match that
of ‘currency’ and finally unset the glyph ‘currency’ in line 7 because there
is no such thing as a generic currency symbol in this font. In the fontinst
file, we include the metric file reseteur.mtx in the file list of the respective
\installfont command right after the metrics for this font have been read.
This might look as follows:
\installfont{bsbr8c}{bsbr8r,reseteur,textcomp}{ts1}{TS1}{bsb}{m}{n}{}

We only need to do this for the TS1 encoded virtual fonts as T1 does not
include the euro symbol. Apart from that, the fontinst file does not need any
adjustments.

48 TUTORIAL 4. THE EURO CURRENCY SYMBOL

4.3 Euro symbol taken from symbol font

Let us go back to our install of Sabon to see if we can get euro support for
Sabon as well. The font itself does not include any euro symbol at all. If we
do not provide a euro symbol, fontinst will automatically try to fake it by
overstriking the capital letter ‘C’ with two horizontal bars as a last resort.
This procedure might yield acceptable results in some cases, but the quality
varies significantly from typeface to typeface. The result can be anything
from reasonable to completely unsuable. Still, it is by all means worth a try
if no matching euro symbol is available.

We could also try to take the euro symbol from an external symbol font.
While some font foundries at least provide special symbol fonts containing a
collection of matching euro glyphs for all typefaces that have not been up-
dated yet, Adobe merely offers a set of generic euro fonts containing glyphs
that do not really match any typeface at all. From a typographical per-
spective, this is a desperate workaround. However, lacking a matching euro
symbol, we do not have a choice. The Adobe Euro fonts2 come in three
flavors: serif (Euro Serif), sans serif (Euro Sans), and condensed sans serif
(Euro Mono, intended for use with monospaced fonts). Each family consists
of regular, regular italic, bold, and bold italic fonts.

Instead of using a serif euro that does not match our typeface we will
use the sans serif design which has a more generic look that adheres to the
reference design of the European Commission. Granted, this one does not
match our typeface either – but at least it does not pretend to do so. Now
that we are aware of the most common encoding pitfalls, we inspect the afm
files first before proceeding with the installation. The Euro fonts put the euro
symbol in all encoding slots. When looking at the afm file, we can see that the
fonts use a font specific encoding and that the glyphs are labeled as ‘Euro’
with a consecutive number appended to the name:
C 33 ; WX 750 ; N Euro.001 ; B 10 -12 709 685 ;
C 34 ; WX 750 ; N Euro.002 ; B 10 -12 709 685 ;
C 35 ; WX 750 ; N Euro.003 ; B 10 -12 709 685 ;
C 36 ; WX 750 ; N Euro.004 ; B 10 -12 709 685 ;
C 37 ; WX 750 ; N Euro.005 ; B 10 -12 709 685 ;

On further inspection, we find two additional glyphs. There is a glyph labeled
‘Euro’ in slot 128 as well as an uncoded glyph labeled ‘uni20ac’:
C 128 ; WX 750 ; N Euro ; B 10 -12 709 685 ;
C -1 ; WX 750 ; N uni20AC ; B 10 -12 709 685 ;

The number 20ac is 8364 in hexadecimal and slot 8364 is the encoding slot of
the euro symbol in Unicode encoding, hence the string ‘uni20ac’. Obviously

2http://www.adobe.com/type/eurofont.html

http://www.adobe.com/type/eurofont.html

4.4. INSTALLING SYMBOL FONTS 49

someone was trying to make sure that every application out there would be
able to access that euro symbol. Fortunately, this covers our situation as
well. We need a glyph that is encoded and labeled as ‘Euro’. The encoding
slot number does not matter since we will include it in a virtual font using
a different encoding anyway. The one in slot 128 fits our needs perfectly. In
practice, this means that we can simply add the file name to the input file
list of an \installfont command when creating TS1 encoded virtual fonts
with fontinst:
\installfont{psbr8c}{psbr8r,zpeurs,textcomp}{ts1}{TS1}{psb}{m}{n}{}

Since the Adobe Euro fonts are non-standard, their naming is non-standard
as well. We will discuss that in more detail below. Before running this file,
we need to copy the properly named afm files of the Adobe Euro fonts to the
working directory so that fontinst will find them. For the euro glyph to be
available later, the Euro fonts need to be installed in the usual way so that
TeX as well as pdfTeX, dvips, and xdvi are able to use them.

4.4 Installing symbol fonts

From a technical perspective, symbol fonts differ from text fonts in that they
are not based on any standardized encoding. They use a font specific encoding
instead. Essentially, this means that the order of the glyphs in the font is
arbitrary. When installing symbol fonts, we will usually not reencode them.
This implies that we have to provide some kind of user interface tailored for
the font if we want to access the glyphs directly. We will discuss that in detail
below. Adobe’s Euro font package3 provides us with the following set of files:
_1______.afm _1i_____.afm _1b_____.afm _1bi____.afm
_1______.inf _1i_____.inf _1b_____.inf _1bi____.inf
_1______.pfb _1i_____.pfb _1b_____.pfb _1bi____.pfb
_1______.pfm _1i_____.pfm _1b_____.pfm _1bi____.pfm
_2______.afm _2i_____.afm _2b_____.afm _2bi____.afm
_2______.inf _2i_____.inf _2b_____.inf _2bi____.inf
_2______.pfb _2i_____.pfb _2b_____.pfb _2bi____.pfb
_2______.pfm _2i_____.pfm _2b_____.pfm _2bi____.pfm
_3______.afm _3i_____.afm _3b_____.afm _3bi____.afm
_3______.inf _3i_____.inf _3b_____.inf _3bi____.inf
_3______.pfb _3i_____.pfb _3b_____.pfb _3bi____.pfb
_3______.pfm _3i_____.pfm _3b_____.pfm _3bi____.pfm

The Fontname map file adobe.map defines the following names for these
fonts:
zpeur EuroSerif-Regular A 916 _3______
zpeub EuroSerif-Bold A 916 _3b_____

3http://www.adobe.com/type/eurofont.html

http://www.adobe.com/type/eurofont.html

50 TUTORIAL 4. THE EURO CURRENCY SYMBOL

zpeubi EuroSerif-BoldItalic A 916 _3bi____
zpeuri EuroSerif-Italic A 916 _3i_____
zpeurs EuroSans-Regular A 916 _1______
zpeubs EuroSans-Bold A 916 _1b_____
zpeubis EuroSans-BoldItalic A 916 _1bi____
zpeuris EuroSans-Italic A 916 _1i_____
zpeurt EuroMono-Regular A 916 _2______
zpeubt EuroMono-Bold A 916 _2b_____
zpeubit EuroMono-BoldItalic A 916 _2bi____
zpeurit EuroMono-Italic A 916 _2i_____

We select all afm and all pfb files, rename them, and start off with the
following file set:
zpeur.afm zpeuri.afm zpeub.afm zpeubi.afm
zpeur.pfb zpeuri.pfb zpeub.pfb zpeubi.pfb
zpeurs.afm zpeuris.afm zpeubs.afm zpeubis.afm
zpeurs.pfb zpeuris.pfb zpeubs.pfb zpeubis.pfb
zpeurt.afm zpeurit.afm zpeubt.afm zpeubit.afm
zpeurt.pfb zpeurit.pfb zpeubt.pfb zpeubit.pfb

The installation of symbol fonts does not really require fontinst as far as
creating the metrics is concerned because we do not need to reencode the
fonts or create virtual fonts based on them. Simply running afm2tfm on each
afm file to create the corresponding tfm file for TeX would do the job:
afm2tfm zpeur.afm zpeur.tfm
afm2tfm zpeuri.afm zpeuri.tfm
afm2tfm zpeub.afm zpeub.tfm
afm2tfm zpeubi.afm zpeubi.tfm

afm2tfm is able to create slanted fonts as well:
afm2tfm zpeur.afm -s 0.167 zpeuro.tfm
afm2tfm zpeub.afm -s 0.167 zpeubo.tfm

The downside of using afm2tfm is that we have to create font definition files
and map files manually. Font definition files are not required if the fonts are
only referenced by other virtual fonts, but they will allow us the access the
fonts directly in any LaTeX file. We will use fontinst to take advantage of its
map file writer and the fact that it generates font definition files automati-
cally.

1 \input fontinst.sty
2 \needsfontinstversion{1.926}
3 \setint{slant}{167}
4 \recordtransforms{peu-rec.tex}

Our fontinst file starts with a familiar header.
5 \transformfont{zpeuro}{\slantfont{\int{slant}}{\fromafm{zpeur}}}
6 \transformfont{zpeubo}{\slantfont{\int{slant}}{\fromafm{zpeub}}}
7 \transformfont{zpeuros}{\slantfont{\int{slant}}{\fromafm{zpeurs}}}
8 \transformfont{zpeubos}{\slantfont{\int{slant}}{\fromafm{zpeubs}}}
9 \transformfont{zpeurot}{\slantfont{\int{slant}}{\fromafm{zpeurt}}}

10 \transformfont{zpeubot}{\slantfont{\int{slant}}{\fromafm{zpeubt}}}

4.4. INSTALLING SYMBOL FONTS 51

Symbol fonts are not reencoded but we still need slanted versions of the
upright euro fonts to go with our slanted text fonts.

11 \installfonts
12 \installfamily{U}{peu}{}

When creating font definition files for symbol fonts, we use the encoding code
U to indicate an unknown (font specific) encoding.

13 \installrawfont{zpeur}{zpeur}{txtfdmns,zpeur mtxasetx}{U}{peu}{m}{n}{}

We want to convert the font metrics given in the afm file to TeX font metrics
directly, without using virtual fonts as a mediating layer. For this kind of
task, we need fontinst’s \installrawfont macro. In case of a straight afm
to tfm conversion, the name of the TeX font metric file (first argument) is
identical to the name of the afm file (second argument). Like \installfont,
the \installrawfont macro requires an encoding file as well. So how do we
deal with a font specific encoding? We load zpeur followed by the option
mtxasetx. This option instructs fontinst to create an ad-hoc encoding vector
based on the order of the glyphs in the font. We add the file txtfdmns.etx to
ensure that TeX’s \fontdimen parameters are set for this font as well (they
are normally set by encoding files like t1.etx).

14 \installfontas{zpeur}{U}{peu}{m}{sc}{}

The fonts do not include a small caps shape so we reuse the upright one. The
remaining fonts are installed in a similar way:

15 \installrawfont{zpeuro}{zpeuro}{txtfdmns,zpeuro mtxasetx}{U}{peu}{m}{sl}{}
16 \installrawfont{zpeuri}{zpeuri}{txtfdmns,zpeuri mtxasetx}{U}{peu}{m}{it}{}
17 \installrawfont{zpeub}{zpeub}{txtfdmns,zpeub mtxasetx}{U}{peu}{b}{n}{}
18 \installfontas{zpeub}{U}{peu}{b}{sc}{}
19 \installrawfont{zpeubo}{zpeubo}{txtfdmns,zpeubo mtxasetx}{U}{peu}{b}{sl}{}
20 \installrawfont{zpeubi}{zpeubi}{txtfdmns,zpeubi mtxasetx}{U}{peu}{b}{it}{}
21 \endinstallfonts

We add the Euro Sans fonts:
22 \installfonts
23 \installfamily{U}{peus}{}
24 \installrawfont{zpeurs}{zpeurs}{txtfdmns,zpeurs mtxasetx}{U}{peus}{m}{n}{}
25 \installfontas{zpeurs}{U}{peus}{m}{sc}{}
26 \installrawfont{zpeuros}{zpeuros}{txtfdmns,zpeuros mtxasetx}{U}{peus}{m}{sl}{}
27 \installrawfont{zpeuris}{zpeuris}{txtfdmns,zpeuris mtxasetx}{U}{peus}{m}{it}{}
28 \installrawfont{zpeubs}{zpeubs}{txtfdmns,zpeubs mtxasetx}{U}{peus}{b}{n}{}
29 \installfontas{zpeubs}{U}{peus}{b}{sc}{}
30 \installrawfont{zpeubos}{zpeubos}{txtfdmns,zpeubos mtxasetx}{U}{peus}{b}{sl}{}
31 \installrawfont{zpeubis}{zpeubis}{txtfdmns,zpeubis mtxasetx}{U}{peus}{b}{it}{}
32 \endinstallfonts

And the Euro Mono fonts:
33 \installfonts
34 \installfamily{U}{peut}{}
35 \installrawfont{zpeurt}{zpeurt}{txtfdmns,zpeurt mtxasetx}{U}{peut}{m}{n}{}

52 TUTORIAL 4. THE EURO CURRENCY SYMBOL

36 \installfontas{zpeurt}{U}{peut}{m}{sc}{}
37 \installrawfont{zpeurot}{zpeurot}{txtfdmns,zpeurot mtxasetx}{U}{peut}{m}{sl}{}
38 \installrawfont{zpeurit}{zpeurit}{txtfdmns,zpeurit mtxasetx}{U}{peut}{m}{it}{}
39 \installrawfont{zpeubt}{zpeubt}{txtfdmns,zpeubt mtxasetx}{U}{peut}{b}{n}{}
40 \installfontas{zpeubt}{U}{peut}{b}{sc}{}
41 \installrawfont{zpeubot}{zpeubot}{txtfdmns,zpeubot mtxasetx}{U}{peut}{b}{sl}{}
42 \installrawfont{zpeubit}{zpeubit}{txtfdmns,zpeubit mtxasetx}{U}{peut}{b}{it}{}
43 \endinstallfonts
44 \endrecordtransforms
45 \bye

Fontinst will record the mapping data in peu-rec.tex, but we still need an
additional driver file which converts these records to the final map file:

1 \input finstmsc.sty
2 \resetstr{PSfontsuffix}{.pfb}
3 \adddriver{dvips}{peu.map}
4 \input peu-rec.tex
5 \donedrivers
6 \bye

After running both fontinst files through tex, we process the property list
files (pl) created by fontinst with pltotf in order to generate TeX font metric
files (tfm). We install the map file peu.map as well as all afm, tfm, pfb, and
fd files in the local TeX tree as explained section 1.4 and add peu.map to the
configuration files for pdfTeX, dvips, and xdvi. Finally, we run texhash. The
euro symbol can now be used in virtual fonts. Since we have font definition
files for LaTeX as well, we could also access it in any LaTeX file with a
command sequence like this one:
{\fontencoding{U}\fontfamily{peu}\selectfont\char 128}

So let us make that a generic euro package, peufonts.sty, for use with all
fonts that do not provide a native euro symbol:

1 \NeedsTeXFormat{LaTeX2e}
2 \ProvidesPackage{peufonts}[2002/10/25 v1.0 Adobe Euro Fonts]
3 \RequirePackage{textcomp}
4 \DeclareRobustCommand{\eurrm}{%
5 {\fontencoding{U}\fontfamily{peu}\selectfont\char 128}}
6 \DeclareRobustCommand{\eursf}{%
7 {\fontencoding{U}\fontfamily{peus}\selectfont\char 128}}
8 \DeclareRobustCommand{\eurtt}{%
9 {\fontencoding{U}\fontfamily{peut}\selectfont\char 128}}

We define three macros, \eurrm, \eursf, and \eurtt, which typeset a serif,
sans serif, and monospaced euro symbol respectively. Note the additional set
of braces. They form a group which keeps the font change local.

10 \DeclareOption{serif}{\def\eur{\eurrm}}
11 \DeclareOption{sans}{\def\eur{\eursf}}
12 \DeclareOption{mono}{\def\eur{\eurtt}}
13 \DeclareOption{textcomp}{%
14 \PackageInfo{peufonts}{Hijacking ’\string\texteuro’}%
15 \def\texteuro{\eur}}

4.4. INSTALLING SYMBOL FONTS 53

16 \ExecuteOptions{sans}
17 \ProcessOptions*
18 \endinput

We also provide \eur along with three options controlling whether it uses
the serif, sans serif, or monospaced euro symbol. Sans is set up as the default
in line 16. The option textcomp will hĳack the text command \texteuro
as provided by the textcomp package. This is very handy when using the
inputenc package with Latin 9 (iso-8859-15) as input encoding and entering
the euro symbol directly, as inputenc uses \texteuro internally. With this
option, we may also type \texteuro or simply € in the input file to typeset a
euro symbol. For this to work, inputenc has to be loaded before this package.
Please keep in mind that this is a global redefinition affecting all text fonts.
We do not activate it by default as some fonts may provide a native euro
symbol. We also write a message to the log when redefining \texteuro and
request the textcomp package in line 3.

54 TUTORIAL 4. THE EURO CURRENCY SYMBOL

Tutorial 5

Expert font sets, regular setup

Expert fonts are complements to be used in conjunction with regular text
fonts. They usually contain optical small caps, additional sets of figures –
hanging, inferior, superior –, the f-ligatures ff, fi, fl, ffi, and ffl, plus a few
text fractions and some other symbols. Since they are companion fonts only,
which do not contain the regular uppercase and lowercase alphabet, they are
not useful on their own. To employ them in a sensible way we need the basic
text fonts as well. In this tutorial, we will install the complete Monotype
Janson font set as provided by the base and the expert package offered by
Agfa Monotype. The base package contains four text fonts (regular, regular
italic, bold, bold italic):
jan_____.afm jani____.afm janb____.afm janbi___.afm
jan_____.inf jani____.inf janb____.inf janbi___.inf
jan_____.pfb jani____.pfb janb____.pfb janbi___.pfb
jan_____.pfm jani____.pfm janb____.pfm janbi___.pfm

The expert package adds the corresponding expert fonts:
jny_____.afm jnyi____.afm jnyb____.afm jnybi___.afm
jny_____.inf jnyi____.inf jnyb____.inf jnybi___.inf
jny_____.pfb jnyi____.pfb jnyb____.pfb jnybi___.pfb
jny_____.pfm jnyi____.pfm jnyb____.pfm jnybi___.pfm

When talking about ‘expert font sets’ in this tutorial, we are referring to all
of the above (base plus expert package). The proper file names for Monotype
Janson are given in monotype.map. Expert fonts have essentially the same file
name as the corresponding text fonts, but their encoding code is 8x instead
of 8a for Adobe Standard encoding. After renaming the files, we start off
with the following file set:
mjnr8a.afm mjnri8a.afm mjnb8a.afm mjnbi8a.afm
mjnr8a.pfb mjnri8a.pfb mjnb8a.pfb mjnbi8a.pfb

mjnr8x.afm mjnri8x.afm mjnb8x.afm mjnbi8x.afm
mjnr8x.pfb mjnri8x.pfb mjnb8x.pfb mjnbi8x.pfb

55

56 TUTORIAL 5. EXPERT FONT SETS, REGULAR SETUP

There are two ways to install an expert font set. Apart from writing a verbose
fontinst file using low-level commands we may also use the \latinfamily
macro. We will take a look at the latter case first and proceed with a verbose
fontinst file afterwards.

5.1 A basic fontinst file

As usual, our driver file starts with a typical header (1–4). The Janson expert
package provides optical small caps for the regular weight but the bold expert
fonts do not contain any small caps. For the bold series, we have to make do
with mechanical small caps. The \latinfamily macro will take care of that
automatically. All we need to do is define a scaling factor of 0.72 on line 4:

1 \input fontinst.sty
2 \needsfontinstversion{1.926}
3 \substitutesilent{bx}{b}
4 \setint{smallcapsscale}{720}
5 \recordtransforms{mjn-rec.tex}

In the third tutorial we have incorporated lining and hanging figures by
creating two font families: a family with the basic, three-character font family
name (lining figures) and a second family featuring hanging figures, with the
letter j appended to the font family name. The character j is the Fontname
code for hanging figures. In this tutorial, we need an additional code: the
letter x, indicating a font featuring expert glyphs. When installing expert
sets with the \latinfamily macro we use these family names to instruct
fontinst that we have an expert set at hand and that we want it to create
a font family featuring expert glyphs with lining figures (6) plus a second
family featuring expert glyphs with hanging figures (7):

6 \latinfamily{mjnx}{}
7 \latinfamily{mjnj}{}
8 \endrecordtransforms
9 \bye

Please note that appending x and j to the font family name works for ex-
pert font sets only. The \latinfamily macro is not capable of dealing with
sc & osf font sets in the same way. Such font sets always require a fontinst
file using low-level commands such as the one discussed in tutorial 3.

5.2 A verbose fontinst file

While the \latinfamily macro incorporates the most fundamental features
of expert sets, such as optical small caps and additional f-ligatures, it does
not exploit all the glyphs found in expert fonts. To take advantage of them,

5.2. A VERBOSE FONTINST FILE 57

we need to use low-level fontinst commands, at least for parts of the fontinst
file. But before we start with our verbose fontinst file, let us first take a
look at some encoding issues specific to expert fonts. When dealing with
sc & osf fonts in the third tutorial, we had to rename some glyphs or move
them around because in sc & osf fonts, hanging figures and small caps are
found in the standard slots for figures and the lowercase alphabet. With small
caps and hanging figures provided by expert fonts the installation is in fact
simpler since all glyph names are unique. To understand the difference, we
will take a brief look at the glyph names in the respective afm files. Compare
the names of the lowercase glyphs as found in mjnr8a.afm to the small caps
glyph names in mjnr8x.afm:
C 97 ; WX 427 ; N a ; B 59 -13 409 426 ;
C 98 ; WX 479 ; N b ; B 18 -13 442 692 ;
C 99 ; WX 427 ; N c ; B 44 -13 403 426 ;

C 97 ; WX 479 ; N Asmall ; B 19 -4 460 451 ;
C 98 ; WX 438 ; N Bsmall ; B 31 -4 395 434 ;
C 99 ; WX 500 ; N Csmall ; B 37 -12 459 443 ;

The situation is similar for lining and hanging (‘old style’) figures. The fol-
lowing lines are taken from mjnr8a.afm and mjnr8x.afm respectively:
C 48 ; WX 469 ; N zero ; B 37 -12 432 627 ;
C 49 ; WX 469 ; N one ; B 109 -5 356 625 ;
C 50 ; WX 469 ; N two ; B 44 0 397 627 ;

C 48 ; WX 469 ; N zerooldstyle ; B 39 0 431 387 ;
C 49 ; WX 271 ; N oneoldstyle ; B 44 -5 229 405 ;
C 50 ; WX 396 ; N twooldstyle ; B 37 0 356 415 ;

In practice, this means that adding expert fonts to the basic font set amounts
to little more than adding them to the input file list of \installfont in most
cases. Still, some additional steps are required. Fortunately, all we need to
do in order to make optical small caps and hanging figures readily available
is using dedicated encoding vectors provided by fontinst. These encoding
vectors reference the glyphs by names corresponding to those found in expert
fonts, thus allowing us to pick optical small caps and hanging figures at will.
With that in mind, we can get down to business. Our fontinst file begins with
a typical header:

1 \input fontinst.sty
2 \needsfontinstversion{1.926}
3 \substitutesilent{bx}{b}
4 \setint{smallcapsscale}{720}
5 \setint{slant}{167}
6 \recordtransforms{mjn-rec.tex}

Unfortunately, Monotype Janson provides small caps for the regular weight
only. Hence we have to make do with mechanical small caps for the bold

58 TUTORIAL 5. EXPERT FONT SETS, REGULAR SETUP

series. We set a scaling factor of 0.72 for that in line 4.
7 \transformfont{mjnr8r}{\reencodefont{8r}{\fromafm{mjnr8a}}}
8 \transformfont{mjnri8r}{\reencodefont{8r}{\fromafm{mjnri8a}}}
9 \transformfont{mjnb8r}{\reencodefont{8r}{\fromafm{mjnb8a}}}

10 \transformfont{mjnbi8r}{\reencodefont{8r}{\fromafm{mjnbi8a}}}
11 \transformfont{mjnro8r}{\slantfont{\int{slant}}\reencodefont{8r}{\fromafm{mjnr8a}}}
12 \transformfont{mjnbo8r}{\slantfont{\int{slant}}\reencodefont{8r}{\fromafm{mjnb8a}}}

We reencode (7–10) and slant (11–12) the basic fonts as usual. Expert fonts
do not require any reencoding, but we need slanted versions of them as well:

13 \transformfont{mjnro8x}{\slantfont{\int{slant}}{\fromafm{mjnr8x}}}
14 \transformfont{mjnbo8x}{\slantfont{\int{slant}}{\fromafm{mjnb8x}}}

We will create two font families: mjnx, featuring expert glyphs, optical small
caps, and lining figures, plus mjnj incorporating hanging instead of lining
figures. TS1 encoded virtual fonts will be generated for the mjnx family only.

15 \installfonts
16 \installfamily{T1}{mjnx}{}
17 \installfont{mjnr9e}{mjnr8r,mjnr8x,newlatin}{t1}{T1}{mjnx}{m}{n}{}

As mentioned above, incorporating expert glyphs boils down to adding an
additional file to the arguments of the \installfont command, in this case
the file mjnr8x.afm. Note that we use the encoding suffix 9e instead of 8t for
all T1 encoded virtual fonts of the mjnx family to indicate that they feature
expert glyphs. While the code 8t, as defined by the Fontname scheme, is
for T1 (Cork) encoding, 9e indicates T1 plus expert glyphs. Please refer to
section 2.4 of the Fontname scheme for a comprehensive list of these codes
and the code tables on page 89 of this guide for additional hints.

18 \installfont{mjnrc9e}{mjnr8r,mjnr8x,newlatin}{t1c}{T1}{mjnx}{m}{sc}{}

For the small caps font we use the encoding vector t1c.etx which will map
the small caps in mjnr8x.afm to the encoding slots of the lowercase alphabet
in our T1 encoded virtual font. The remaining virtual fonts of the mjnx family
are built as expected:

19 \installfont{mjnri9e}{mjnri8r,mjnri8x,newlatin}{t1}{T1}{mjnx}{m}{it}{}
20 \installfont{mjnro9e}{mjnro8r,mjnro8x,newlatin}{t1}{T1}{mjnx}{m}{sl}{}
21 \installfont{mjnb9e}{mjnb8r,mjnb8x,newlatin}{t1}{T1}{mjnx}{b}{n}{}
22 \installfont{mjnbc9e}{mjnb8r,mjnb8x,newlatin}{t1c}{T1}{mjnx}{b}{sc}{}

Since the bold expert font does not include small caps, we have to create
mechanical ones. The t1c.etx encoding vector will deal with that transpar-
ently if it does not find optical small caps in any of the raw fonts, using the
value of smallcapsscale as the scaling factor.

23 \installfont{mjnbi9e}{mjnbi8r,mjnbi8x,newlatin}{t1}{T1}{mjnx}{b}{it}{}
24 \installfont{mjnbo9e}{mjnbo8r,mjnbo8x,newlatin}{t1}{T1}{mjnx}{b}{sl}{}
25 \endinstallfonts

5.2. A VERBOSE FONTINST FILE 59

That’s it for T1 encoding. Creating TS1 encoded virtual fonts featuring ex-
pert glyphs is pretty straightforward. In order to take advantage of the ad-
ditional glyphs provided by expert fonts, we simply add them to the input
file list:

26 \installfonts
27 \installfamily{TS1}{mjnx}{}
28 \installfont{mjnr9c}{mjnr8r,mjnr8x,textcomp}{ts1}{TS1}{mjnx}{m}{n}{}

Note the encoding suffix of the virtual fonts. We use 9c instead of 8c to
indicate that the virtual fonts feature expert glyphs.

29 \installfontas{mjnr9c}{TS1}{mjnx}{m}{sc}{}
30 \installfont{mjnri9c}{mjnri8r,mjnri8x,textcomp}{ts1}{TS1}{mjnx}{m}{it}{}
31 \installfont{mjnro9c}{mjnro8r,mjnro8x,textcomp}{ts1}{TS1}{mjnx}{m}{sl}{}
32 \installfont{mjnb9c}{mjnb8r,mjnb8x,textcomp}{ts1}{TS1}{mjnx}{b}{n}{}
33 \installfontas{mjnb9c}{TS1}{mjnx}{b}{sc}{}
34 \installfont{mjnbi9c}{mjnbi8r,mjnbi8x,textcomp}{ts1}{TS1}{mjnx}{b}{it}{}
35 \installfont{mjnbo9c}{mjnbo8r,mjnbo8x,textcomp}{ts1}{TS1}{mjnx}{b}{sl}{}
36 \endinstallfonts

The mjnx family including T1 and TS1 encoded fonts is now complete. We
continue with the mjnj family which we want to feature hanging figures by
default:

37 \installfonts
38 \installfamily{T1}{mjnj}{}
39 \installfont{mjnr9d}{mjnr8r,mjnr8x,newlatin}{t1j}{T1}{mjnj}{m}{n}{}

The encoding code 9d indicates a T1 encoded font with expert glyphs and
hanging figures. We will use this code for all T1 encoded virtual fonts of
the mjnj family. This family is supposed to feature hanging figures in the
standard encoding slots for figures. We have to keep in mind that the regular
encoding vector for T1 encoding (t1.etx) references the figures as ‘zero’ and
‘one’ while the hanging (‘old style’) figures in the expert font (which we want
to be available by default) are labeled ‘zerooldstyle’ and ‘oneoldstyle’. In or-
der to arrange the glyphs according to our wishes, we use the special encoding
vector t1j.etx. This file is essentially equivalent to t1.etx, but it will au-
tomatically append the suffix ‘oldstyle’ to the names of figures referenced by
the encoding vector.

40 \installfont{mjnrc9d}{mjnr8r,mjnr8x,newlatin}{t1cj}{T1}{mjnj}{m}{sc}{}

For the small caps shape, we use the encoding file t1cj.etx instead of t1c.
etx to make hanging figures the default. The other virtual fonts are built
like the upright shape:

41 \installfont{mjnri9d}{mjnri8r,mjnri8x,newlatin}{t1j}{T1}{mjnj}{m}{it}{}
42 \installfont{mjnro9d}{mjnro8r,mjnro8x,newlatin}{t1j}{T1}{mjnj}{m}{sl}{}
43 \installfont{mjnb9d}{mjnb8r,mjnb8x,newlatin}{t1j}{T1}{mjnj}{b}{n}{}
44 \installfont{mjnbc9d}{mjnb8r,mjnb8x,newlatin}{t1cj}{T1}{mjnj}{b}{sc}{}

60 TUTORIAL 5. EXPERT FONT SETS, REGULAR SETUP

The bold expert fonts do not include small caps but the encoding file t1cj.
etx is capable of creating mechanical small caps transparently, hence we use
it for the bold small caps font as well.

45 \installfont{mjnbi9d}{mjnbi8r,mjnbi8x,newlatin}{t1j}{T1}{mjnj}{b}{it}{}
46 \installfont{mjnbo9d}{mjnbo8r,mjnbo8x,newlatin}{t1j}{T1}{mjnj}{b}{sl}{}
47 \endinstallfonts

Finally, we use \installfontas to ‘install’ the TS1 encoded virtual fonts
of the mjnx family as TS1/mjnj. This will merely add some lines to the font
definition file without creating any additional virtual fonts:

48 \installfonts
49 \installfamily{TS1}{mjnj}{}
50 \installfontas{mjnr9c}{TS1}{mjnj}{m}{n}{}
51 \installfontas{mjnr9c}{TS1}{mjnj}{m}{sc}{}
52 \installfontas{mjnri9c}{TS1}{mjnj}{m}{it}{}
53 \installfontas{mjnro9c}{TS1}{mjnj}{m}{sl}{}
54 \installfontas{mjnb9c}{TS1}{mjnj}{b}{n}{}
55 \installfontas{mjnb9c}{TS1}{mjnj}{b}{sc}{}
56 \installfontas{mjnbi9c}{TS1}{mjnj}{b}{it}{}
57 \installfontas{mjnbo9c}{TS1}{mjnj}{b}{sl}{}
58 \endinstallfonts

At this point, we have a comprehensive text setup featuring expert f-ligatures,
optical small caps as well as a choice of readily available lining and hanging
figures. However, there are some glyphs in expert fonts that we have not
considered yet.

5.3 Inferior and superior figures

Expert fonts usually provide superior and inferior figures which can be com-
bined with a dedicated fraction slash called ‘solidus’ to typeset arbitrary text
fractions like 1⁄2 or even 31⁄127. Please note that these figures are not suitable
for TeX’s math mode but they can be useful in text mode even if there is no
need to typeset text fractions. For example, in this guide the footnote marks
in the body text are typeset using superior figures and inferior figures are
used for the line numbers of the code listings. Like hanging figures, we want
inferior and superior figures to be readily available. Therefore, we will create
two additional font families, mjn0 and mjn1, which put inferior and superior
figures in the standard encoding slots for figures just like our mjnj family
does for hanging figures. We have been using the encoding vector t1j.etx
to make hanging figures the default in this tutorial so let us find out what
t1j.etx does in detail and try to modify this approach according to our
needs. The regular T1 encoding vector t1.etx defines the encoding slots for
all figures as follows:

5.3. INFERIOR AND SUPERIOR FIGURES 61

\setslot{\digit{one}}\endsetslot
\setslot{\digit{two}}\endsetslot
\setslot{\digit{three}}\endsetslot

The glyph names of figures are not given verbatim, they are used as an
argument to the \digit macro. This is the default definition of said macro
as given in t1.etx:
\setcommand\digit#1{#1}

This means that the glyph labeled ‘one’ in the afm file will end up in the
encoding slot for the numeral one in the virtual font – and so on. t1j.etx
defines the \digit macro as follows:
\setcommand\digit#1{#1oldstyle}

In this case the glyph labeled ‘oneoldstyle’ in the afm file will end up in
the encoding slot for the numeral one in the T1 encoded virtual font. When
comparing the glyph names of hanging, inferior, and superior figures in the
afm files of our expert fonts now, the approach we need to take in order to
access them should be obvious:
C 48 ; WX 469 ; N zerooldstyle ; B 39 0 431 387 ;
C 49 ; WX 271 ; N oneoldstyle ; B 44 -5 229 405 ;
C 50 ; WX 396 ; N twooldstyle ; B 37 0 356 415 ;

C 210 ; WX 323 ; N zeroinferior ; B 27 -13 296 355 ;
C 211 ; WX 323 ; N oneinferior ; B 84 -5 240 357 ;
C 212 ; WX 323 ; N twoinferior ; B 27 0 288 358 ;

C 200 ; WX 323 ; N zerosuperior ; B 27 293 296 661 ;
C 201 ; WX 323 ; N onesuperior ; B 84 298 240 661 ;
C 202 ; WX 323 ; N twosuperior ; B 27 303 288 661 ;

Just like ‘old style’ figures, inferior and superior figures use suffixes to the
respective glyph names in (properly encoded) expert fonts. This means that
we can simply load an additional encoding file before loading t1.etx and
predefine the \digit macro accordingly. For inferior figures, we create the
file inferior.etx:
\relax
\encoding
\setcommand\digit#1{#1inferior}
\endencoding
\endinput

All we need to do is use \setcommand to predefine the \digit macro like
this:
\setcommand\digit#1{#1inferior}

This will add the suffix ‘inferior’ to all digits. Since fontinst’s \setcommand
macro works like LaTeX’s \providecommand, the encoding file t1.etx will
not overwrite our definition if we load it after inferior.etx. The approach is

62 TUTORIAL 5. EXPERT FONT SETS, REGULAR SETUP

similar for superior figures. We create another encoding file called superior.
etx:
\relax
\encoding
\setcommand\digit#1{#1superior}
\endencoding
\endinput

With inferior.etx and superior.etx at hand, we can now easily create
the font families mjn0 and mjn1. Let us put the new encoding vectors in our
working directory and go back to the fontinst file:

59 \installfonts
60 \installfamily{T1}{mjn0}{}
61 \installfont{mjnr09e}{mjnr8r,mjnr8x,newlatin}{inferior,t1}{T1}{mjn0}{m}{n}{}

We add the Fontname code 0 to the names of the virtual fonts in order to
indicate inferior figures, load our newly created encoding file inferior.etx
before t1.etx, and adapt the nfss font declarations accordingly. Other than
that, the virtual fonts of the mjn0 family are generated in the usual way:

62 \installfontas{mjnr09e}{T1}{mjn0}{m}{sc}{}
63 \installfont{mjnri09e}{mjnri8r,mjnri8x,newlatin}{inferior,t1}{T1}{mjn0}{m}{it}{}
64 \installfont{mjnro09e}{mjnro8r,mjnro8x,newlatin}{inferior,t1}{T1}{mjn0}{m}{sl}{}
65 \installfont{mjnb09e}{mjnb8r,mjnb8x,newlatin}{inferior,t1}{T1}{mjn0}{b}{n}{}
66 \installfontas{mjnb09e}{T1}{mjn0}{b}{sc}{}
67 \installfont{mjnbi09e}{mjnbi8r,mjnbi8x,newlatin}{inferior,t1}{T1}{mjn0}{b}{it}{}
68 \installfont{mjnbo09e}{mjnbo8r,mjnbo8x,newlatin}{inferior,t1}{T1}{mjn0}{b}{sl}{}
69 \endinstallfonts

Any TS1 encoded virtual fonts of the mjn0 family would not differ from those
of mjnx, so we create a font definition file which points LaTeX to the TS1
encoded virtual fonts we created for the mjnx family before:

70 \installfonts
71 \installfamily{TS1}{mjn0}{}
72 \installfontas{mjnr9c}{TS1}{mjn0}{m}{n}{}
73 \installfontas{mjnr9c}{TS1}{mjn0}{m}{sc}{}
74 \installfontas{mjnri9c}{TS1}{mjn0}{m}{it}{}
75 \installfontas{mjnro9c}{TS1}{mjn0}{m}{sl}{}
76 \installfontas{mjnb9c}{TS1}{mjn0}{b}{n}{}
77 \installfontas{mjnb9c}{TS1}{mjn0}{b}{sc}{}
78 \installfontas{mjnbi9c}{TS1}{mjn0}{b}{it}{}
79 \installfontas{mjnbo9c}{TS1}{mjn0}{b}{sl}{}
80 \endinstallfonts

For the mjn1 family, we adapt the names of the virtual fonts (adding the
Fontname code 1 to indicate superior figures), the encoding files (superior.
etx and t1.etx), and the nfss declarations:

81 \installfonts
82 \installfamily{T1}{mjn1}{}
83 \installfont{mjnr19e}{mjnr8r,mjnr8x,newlatin}{superior,t1}{T1}{mjn1}{m}{n}{}

We create the remaining virtual fonts in a similar way:

5.4. AN EXTENDED STYLE FILE 63

84 \installfontas{mjnr19e}{T1}{mjn1}{m}{sc}{}
85 \installfont{mjnri19e}{mjnri8r,mjnri8x,newlatin}{superior,t1}{T1}{mjn1}{m}{it}{}
86 \installfont{mjnro19e}{mjnro8r,mjnro8x,newlatin}{superior,t1}{T1}{mjn1}{m}{sl}{}
87 \installfont{mjnb19e}{mjnb8r,mjnb8x,newlatin}{superior,t1}{T1}{mjn1}{b}{n}{}
88 \installfontas{mjnb19e}{T1}{mjn1}{b}{sc}{}
89 \installfont{mjnbi19e}{mjnbi8r,mjnbi8x,newlatin}{superior,t1}{T1}{mjn1}{b}{it}{}
90 \installfont{mjnbo19e}{mjnbo8r,mjnbo8x,newlatin}{superior,t1}{T1}{mjn1}{b}{sl}{}
91 \endinstallfonts

Finally, we create a font definition file for TS1/mjn1 and terminate our
fontinst file:

92 \installfonts
93 \installfamily{TS1}{mjn1}{}
94 \installfontas{mjnr9c}{TS1}{mjn1}{m}{n}{}
95 \installfontas{mjnr9c}{TS1}{mjn1}{m}{sc}{}
96 \installfontas{mjnri9c}{TS1}{mjn1}{m}{it}{}
97 \installfontas{mjnro9c}{TS1}{mjn1}{m}{sl}{}
98 \installfontas{mjnb9c}{TS1}{mjn1}{b}{n}{}
99 \installfontas{mjnb9c}{TS1}{mjn1}{b}{sc}{}

100 \installfontas{mjnbi9c}{TS1}{mjn1}{b}{it}{}
101 \installfontas{mjnbo9c}{TS1}{mjn1}{b}{sl}{}
102 \endinstallfonts
103 \endrecordtransforms
104 \bye

Our setup is now complete as far as LaTeX is concerned. We still need to
create another fontinst file that will read the data recorded in mjn-rec.tex
and convert it to a map file suitable for dvips. The format of this driver file
is discussed in section 1.5 of this guide.

5.4 An extended style file

Our style file for Janson, janson.sty, is based on the one suggested in section
3.2. We simply adjust the package name and the names of the font families:

1 \NeedsTeXFormat{LaTeX2e}
2 \ProvidesPackage{janson}[2002/12/30 v1.0 Monotype Janson]
3 \RequirePackage[T1]{fontenc}
4 \RequirePackage{textcomp}
5 \RequirePackage{nfssext}
6 \DeclareOption{lining}{\renewcommand*{\rmdefault}{mjnx}}
7 \DeclareOption{oldstyle}{\renewcommand*{\rmdefault}{mjnj}}
8 \ExecuteOptions{oldstyle}
9 \ProcessOptions*

10 \endinput

With an expert font set at hand, however, we have to extend nfssext.sty
to support expert families:

1 \NeedsTeXFormat{LaTeX2e}
2 \ProvidesPackage{nfssext}[2003/03/14 v1.2 Experimental NFSS Extensions]
3 \newcommand*{\exfs@tempa}{}
4 \newcommand*{\exfs@tempb}{}

64 TUTORIAL 5. EXPERT FONT SETS, REGULAR SETUP

5 \newcommand*{\exfs@try@family}[2][]{%
6 \let\exfs@tempa\relax
7 \begingroup
8 \fontfamily{#2}\try@load@fontshape
9 \expandafter\ifx\csname\curr@fontshape\endcsname\relax

10 \edef\exfs@tempa{#1}%
11 \ifx\exfs@tempa\@empty
12 \PackageWarning{nfssext}{%
13 Font family ’\f@encoding/#2’ not available\MessageBreak
14 Ignoring font switch}%
15 \else
16 \PackageInfo{nfssext}{%
17 Font family ’\f@encoding/#2’ not available\MessageBreak
18 Font family ’\f@encoding/#1’ tried instead}%
19 \exfs@try@family{#1}%
20 \fi
21 \else
22 \gdef\exfs@tempa{\fontfamily{#2}\selectfont}%
23 \fi
24 \endgroup
25 \exfs@tempa}

As soon as expert fonts come into play, the \lnstyle macro has to cater for
two font families which, depending on the font, may contain lining figures:
a basic font family with a three-character code or an expert family with a
four-character code ending with the letter x. To make sure that nfssext.sty
will work for fonts like Janson as well as fonts without an expert set, the first
thing we need to do is extend our main font switching macro, enabling it
to cope with both cases. To do so, we will introduce an optional argument.
Essentially, we try to load the font family given by the mandatory argument
first (8). If this family is not available, we do not quit with a warning but
add a note to the log file (16–18) and try the family given by the optional
argument next (19). If loading the alternative family fails as well, we finally
print a warning message (12–14). If the optional argument is not used, the
second step will be omitted.

26 \def\exfs@get@base#1#2#3#4\@nil{#1#2#3}
27 \DeclareRobustCommand{\lnstyle}{%
28 \not@math@alphabet\lnstyle\relax
29 \exfs@try@family[\expandafter\exfs@get@base\f@family\@nil]%
30 {\expandafter\exfs@get@base\f@family\@nil x}}

After that, the \lnstyle macro needs to be adjusted in order to exploit the
optional argument. It will try the expert family with a four-character code
first (30) and make \exfs@try@family fall back to the basic font family with
a three-character code (29) if the former is not available.

31 \DeclareRobustCommand{\osstyle}{%
32 \not@math@alphabet\osstyle\relax
33 \exfs@try@family{\expandafter\exfs@get@base\f@family\@nil j}}

5.5. USING THE FEATURES OF EXPERT FONTS 65

The availability of hanging figures is expressed by appending the letter j to
the font family code for both basic and expert font sets, so \osstyle does
not need any modification.

34 \DeclareRobustCommand{\instyle}{%
35 \not@math@alphabet\instyle\relax
36 \exfs@try@family{\expandafter\exfs@get@base\f@family\@nil 0}}
37 \DeclareRobustCommand{\sustyle}{%
38 \not@math@alphabet\sustyle\relax
39 \exfs@try@family{\expandafter\exfs@get@base\f@family\@nil 1}}

With inferior and superior figures implemented as two additional font fami-
lies, mjn0 and mjn1, we add two macros activating these families by adding
0 and 1 to the family name respectively.

40 \DeclareTextFontCommand{\textln}{\lnstyle}
41 \DeclareTextFontCommand{\textos}{\osstyle}
42 \DeclareTextFontCommand{\textin}{\instyle}
43 \DeclareTextFontCommand{\textsu}{\sustyle}
44 \endinput

We also add two text commands, \textin and \textsu, which activate these
figures locally, similar to \textit or \textbf.

5.5 Using the features of expert fonts

Most features of expert font sets such as additional f-ligatures and optical
small caps will be available automatically when selecting the new font fami-
lies. Using them does not require any additional macros. Lining and hanging
figures can be conveniently selected by activating the respective font family,
in this case mjnx and mjnj, or by using the style file janson.sty suggested
above. Since inferior and superior figures are not used as regular figures,
they are treated differently. We will take a look at some possible applica-
tions. The inferior and superior figures found in expert fonts were originally
intended for typesetting text fractions so let us write a simple macro for
that. To typeset a fraction, we combine inferior and superior figures with the
\textfractionsolidus macro provided by the textcomp package. Access-
ing the figures implies switching font families locally. Note the additional set
of braces which will keep the font change local:
\newcommand*{\textfrac}[2]{%

{\fontfamily{mjn1}\selectfont #1}%
\textfractionsolidus
{\fontfamily{mjn0}\selectfont #2}}

Writing \textfrac{1}{2} in the input file will typeset the fraction 1⁄2. When
looking at regular and expert fonts in a font editor, you will see that they
contain a fixed number of text fractions. Some of them are included in TS1

66 TUTORIAL 5. EXPERT FONT SETS, REGULAR SETUP

encoding and supported by the textcomp package (see appendix B), but
typing rather long commands such as \textthreequarters is not exactly
convenient. Since there are only nine of them they are not very useful anyway.
With a complete set of inferior and superior figures at our disposal, our macro
will work for arbitrary fractions like 3⁄7 or 13⁄17. Instead of using ‘hard-wired’
fonts as shown above, it is even better to use the font switching macros
provided by nfssext.sty instead since they will dynamically adjust to the
active text font:
\newcommand*{\textfrac}[2]{%

\textsu{#1}%
\textfractionsolidus
\textin{#2}}

What about using superior figures as footnote numbers? To do so, we need
to redefine \@makefnmark. This is LaTeX’s default definition:
\def\@makefnmark{\hbox{\@textsuperscript{\normalfont\@thefnmark}}}

In order to use optical superior figures instead of mechanical ones, we drop
\@textsuperscript and switch font families instead:
\def\@makefnmark{\hbox{\fontfamily{mjn1}\selectfont\@thefnmark}}

We do not need to add additional braces in this case since \hbox will keep
the font change local. Using our new font switching macros, this may also be
accomplished like this:
\def\@makefnmark{\hbox{\sustyle\@thefnmark}}

Keep in mind that, if you want to put a definition of \@makefnmark in the
preamble of a regular LaTeX input file (as opposed to a class or a style file),
it has to be enclosed in \makeatletter and \makeatother:
\makeatletter
\def\@makefnmark{\hbox{\sustyle\@thefnmark}}
\makeatother

Tutorial 6

Expert font sets, extended
setup

In this tutorial we will combine what we have learned in tutorials 3 and
5 to install a very complete font set featuring expert fonts, small caps, and
hanging figures. This tutorial will also add multiple weights, italic small caps,
italic swashes and text ornaments to that. Our example is Adobe Minion,
base plus expert packages:
pmnr8a Minion-Regular A 143 morg____
pmnrc8a Minion-RegularSC A 144 mosc____
pmnri8a Minion-Italic A 143 moi_____
pmnric8a Minion-ItalicSC A 144 moisc___
pmnriw7a Minion-SwashItalic A 144 moswi___
pmns8a Minion-Semibold A 143 mosb____
pmnsc8a Minion-SemiboldSC A 144 mosbs___
pmnsi8a Minion-SemiboldItalic A 143 mosbi___
pmnsic8a Minion-SemiboldItalicSC A 144 mosic___
pmnsiw7a Minion-SwashSemiboldItalic A 144 mossb___
pmnb8a Minion-Bold A 143 mob_____
pmnbj8a Minion-BoldOsF A 144 mobos___
pmnbi8a Minion-BoldItalic A 143 mobi____
pmnbij8a Minion-BoldItalicOsF A 144 mobio___
pmnc8a Minion-Black A 143 mobl____
pmncj8a Minion-BlackOsF A 144 mozof___
pmnr8x MinionExp-Regular A 144 mjrg____
pmnri8x MinionExp-Italic A 144 mji_____
pmns8x MinionExp-Semibold A 144 mjsb____
pmnsi8x MinionExp-SemiboldItalic A 144 mjsbi___
pmnb8x MinionExp-Bold A 144 mjb_____
pmnbi8x MinionExp-BoldItalic A 144 mjbi____
pmnc8x MinionExp-Black A 144 mjbl____
pmnrp Minion-Ornaments A 144 moor____

Note that the bold and black fonts do not feature optical small caps. There are
expert fonts for these weights, but they do not contain any small caps glyphs.
When looking at the list of available shapes in each weight class it should

67

68 TUTORIAL 6. EXPERT FONT SETS, EXTENDED SETUP

be obvious that the semibold fonts are the intended default bold weight of
this typeface. The bold fonts are merely intended for applications requiring
a stronger contrast, for example to highlight the keywords in a dictionary.
We will omit the black fonts in this tutorial as they are only of limited use.
If required, they are easily added to the fontinst file. In addition to these
text fonts, the expert package includes a set of regular-weight display fonts
intended for titling and display work at very large sizes. Generated from the
same master sources by interpolation, the display fonts share the lettershapes
of the text fonts while being based on a design size of 72 pt. Since they form
a complete set including small caps and expert fonts, they are handled just
like the Minion text set and we will not explicitly consider them here.

6.1 The fontinst file

With a very comprehensive set of fonts at our disposal, we will be fastidious.
We will not create any computed glyph shapes (no mechanical small caps
and no slanted fonts), making this setup suitable for professional typesetting.
Without further ado, we start off as usual:

1 \nonstopmode
2 \input fontinst.sty
3 \needsfontinstversion{1.926}
4 \substitutesilent{bx}{sb}
5 \recordtransforms{pmn-rec.tex}

We make semibold the default bold weight by substituting sb for bx in line
4. First of all, we reencode all base fonts which are based on Adobe Standard
encoding. Even though the swash fonts are also based on Adobe Standard,
they are handled like expert fonts because they contain a special set of glyphs,
all of which are encoded by default:

6 \transformfont{pmnr8r}{\reencodefont{8r}{\fromafm{pmnr8a}}}
7 \transformfont{pmnrc8r}{\reencodefont{8r}{\fromafm{pmnrc8a}}}
8 \transformfont{pmnri8r}{\reencodefont{8r}{\fromafm{pmnri8a}}}
9 \transformfont{pmnric8r}{\reencodefont{8r}{\fromafm{pmnric8a}}}

10 \transformfont{pmns8r}{\reencodefont{8r}{\fromafm{pmns8a}}}
11 \transformfont{pmnsc8r}{\reencodefont{8r}{\fromafm{pmnsc8a}}}
12 \transformfont{pmnsi8r}{\reencodefont{8r}{\fromafm{pmnsi8a}}}
13 \transformfont{pmnsic8r}{\reencodefont{8r}{\fromafm{pmnsic8a}}}
14 \transformfont{pmnb8r}{\reencodefont{8r}{\fromafm{pmnb8a}}}
15 \transformfont{pmnbi8r}{\reencodefont{8r}{\fromafm{pmnbi8a}}}

In this tutorial we are dealing with a typeface featuring both sc & osf and
expert sets. When building virtual fonts, we could take small caps and hang-
ing figures from either set of fonts. We will use the expert fonts anyway in
order to take advantage of the extra f-ligatures exclusively found in expert
fonts, so why not simply take the small caps from the same source as demon-

6.1. THE FONTINST FILE 69

strated in tutorial 5? Note that there is one problem with taking optical
small caps from an expert font: there will be no kerning between the upper-
case alphabet and the small caps replacing the lowercase letters because the
glyphs are found in separate fonts. Without dedicated small caps fonts there
is nothing we can do about that short of adding kerning pairs manually. Now
that we have both expert and small caps fonts, however, we could take an
approach similar to the one outlined in tutorial 3, adding the expert font on
top of that to get the additional ligatures. We will use a different technique
though, which extracts the more comprehensive kerning data from the small
caps fonts while taking the glyphs from the base and the expert fonts only:

16 \reglyphfonts
17 \input csckrn2x.tex
18 \reglyphfont{pmnrc8x}{pmnrc8r}
19 \reglyphfont{pmnric8x}{pmnric8r}
20 \reglyphfont{pmnsc8x}{pmnsc8r}
21 \reglyphfont{pmnsic8x}{pmnsic8r}
22 \endreglyphfonts

To do so, we use fontinst’s reglyphfonts environment and the \reglyphfont
macro. This macro will essentially apply a batch job to the metric file given as
the second argument and save the result to a new file specified by the first ar-
gument. The actual transformation commands are read from csckrn2x.tex,
which is provided by fontinst. This file will discard all glyph metrics, keeping
only the kerning data we need. It will also rename all glyphs so that they
conform to the naming conventions of expert fonts (hence we use the en-
coding code 8x, which indicates an expert font, when saving the transformed
data). This way we ensure that we get unique glyph names. Apart from being
conceptually cleaner, this approach has the additional benefit of not requir-
ing the small caps fonts after the metrics and the virtual fonts have been
generated, resulting in slightly smaller pdf and PostScript files if the fonts
are embedded.

23 \installfonts
24 \installfamily{T1}{pmnx}{}
25 \installfont{pmnr9e}{pmnr8r,pmnr8x,newlatin}{t1}{T1}{pmnx}{m}{n}{}
26 \installfont{pmnri9e}{pmnri8r,pmnri8x,newlatin}{t1}{T1}{pmnx}{m}{it}{}
27 \installfontas{pmnri9e}{T1}{pmnx}{m}{sl}{}

The setup of the upright and italic shapes does not differ from tutorial 5 at
all. We do not create slanted fonts but install the italic font as both italic
and slanted shape.

28 \installfont{pmnrc9e}{pmnr8r,pmnr8x,pmnrc8x,newlatin}{t1c}{T1}{pmnx}{m}{sc}{}

When creating the small caps font, we use the encoding file t1c.etx since the
small caps in the expert font bear unique names suitable for this encoding
vector. We also want to add the kerning data found in pmnrc8a.afm to our

70 TUTORIAL 6. EXPERT FONT SETS, EXTENDED SETUP

virtual font. This data was already extracted and saved to pmnrc8x in line
18, so we simply add this file to the input file list. After that, we have a fully
kerned small caps font.

29 \installfont{pmnric9e}{pmnri8r,pmnri8x,pmnric8x,newlatin}{t1c}{T1}{pmnx}{m}{si}{}

Minion also features an italic small caps font which we install just like its
upright counterpart, using si as the nfss shape code.

30 \installfont{pmns9e}{pmns8r,pmns8x,newlatin}{t1}{T1}{pmnx}{sb}{n}{}
31 \installfont{pmnsi9e}{pmnsi8r,pmnsi8x,newlatin}{t1}{T1}{pmnx}{sb}{it}{}
32 \installfontas{pmnsi9e}{T1}{pmnx}{sb}{sl}{}
33 \installfont{pmnsc9e}{pmns8r,pmns8x,pmnsc8x,newlatin}{t1c}{T1}{pmnx}{sb}{sc}{}
34 \installfont{pmnsic9e}{pmnsi8r,pmnsi8x,pmnsic8x,newlatin}{t1c}{T1}{pmnx}{sb}{si}{}

We repeat these steps for the semibold and the bold weight. The bold weight
is slightly different because there are no optical small caps:

35 \installfont{pmnb9e}{pmnb8r,pmnb8x,newlatin}{t1}{T1}{pmnx}{b}{n}{}
36 \installfont{pmnbi9e}{pmnbi8r,pmnbi8x,newlatin}{t1}{T1}{pmnx}{b}{it}{}
37 \installfontas{pmnbi9e}{T1}{pmnx}{b}{sl}{}
38 \installfontas{pmnb9e}{T1}{pmnx}{b}{sc}{}
39 \installfontas{pmnbi9e}{T1}{pmnx}{b}{si}{}
40 \endinstallfonts

After finishing T1 encoding we continue with TS1. Our approach to TS1
encoding does not differ substantially from tutorial 5:

41 \installfonts
42 \installfamily{TS1}{pmnx}{}
43 \installfont{pmnr9c}{pmnr8r,pmnr8x,textcomp}{ts1}{TS1}{pmnx}{m}{n}{}
44 \installfont{pmnri9c}{pmnri8r,pmnri8x,textcomp}{ts1}{TS1}{pmnx}{m}{it}{}
45 \installfontas{pmnri9c}{TS1}{pmnx}{m}{sl}{}
46 \installfontas{pmnr9c}{TS1}{pmnx}{m}{sc}{}
47 \installfontas{pmnri9c}{TS1}{pmnx}{m}{si}{}
48 \installfont{pmns9c}{pmns8r,pmns8x,textcomp}{ts1}{TS1}{pmnx}{sb}{n}{}
49 \installfont{pmnsi9c}{pmnsi8r,pmnsi8x,textcomp}{ts1}{TS1}{pmnx}{sb}{it}{}
50 \installfontas{pmnsi9c}{TS1}{pmnx}{sb}{sl}{}
51 \installfontas{pmns9c}{TS1}{pmnx}{sb}{sc}{}
52 \installfontas{pmnsi9c}{TS1}{pmnx}{sb}{si}{}
53 \installfont{pmnb9c}{pmnb8r,pmnb8x,textcomp}{ts1}{TS1}{pmnx}{b}{n}{}
54 \installfont{pmnbi9c}{pmnbi8r,pmnbi8x,textcomp}{ts1}{TS1}{pmnx}{b}{it}{}
55 \installfontas{pmnbi9c}{TS1}{pmnx}{b}{sl}{}
56 \installfontas{pmnb9c}{TS1}{pmnx}{b}{sc}{}
57 \installfontas{pmnbi9c}{TS1}{pmnx}{b}{si}{}
58 \endinstallfonts

The pmnx family is now complete. We continue with pmnj which will feature
hanging figures by default:

59 \installfonts
60 \installfamily{T1}{pmnj}{}
61 \installfont{pmnr9d}{pmnr8r,pmnr8x,newlatin}{t1j}{T1}{pmnj}{m}{n}{}
62 \installfont{pmnri9d}{pmnri8r,pmnri8x,newlatin}{t1j}{T1}{pmnj}{m}{it}{}
63 \installfontas{pmnri9d}{T1}{pmnj}{m}{sl}{}

6.1. THE FONTINST FILE 71

To make hanging figures the default throughout the pmnj family we employ
the encoding file t1j.etx. Other than that, the setup of the upright and
italic shapes does not differ from pmnx.

64 \installfont{pmnrc9d}{pmnr8r,pmnr8x,pmnrc8x,newlatin}{t1cj}{T1}{pmnj}{m}{sc}{}
65 \installfont{pmnric9d}{pmnri8r,pmnri8x,pmnric8x,newlatin}{t1cj}{T1}{pmnj}{m}{si}{}

For the small caps shape of the pmnj family we essentially use the technique
introduced above. Since this font family will feature hanging figures, however,
we load the encoding file t1cj.etx.

66 \installfont{pmns9d}{pmns8r,pmns8x,newlatin}{t1j}{T1}{pmnj}{sb}{n}{}
67 \installfont{pmnsi9d}{pmnsi8r,pmnsi8x,newlatin}{t1j}{T1}{pmnj}{sb}{it}{}
68 \installfontas{pmnsi9d}{T1}{pmnj}{sb}{sl}{}
69 \installfont{pmnsc9d}{pmns8r,pmns8x,pmnsc8x,newlatin}{t1cj}{T1}{pmnj}{sb}{sc}{}
70 \installfont{pmnsic9d}{pmnsi8r,pmnsi8x,pmnsic8x,newlatin}{t1cj}{T1}{pmnj}{sb}{si}{}

Again, we repeat these steps for the semibold weight. The bold fonts are
handled like those of the pmnx family, only differing in the choice of the
encoding file:

71 \installfont{pmnb9d}{pmnb8r,pmnb8x,newlatin}{t1j}{T1}{pmnj}{b}{n}{}
72 \installfont{pmnbi9d}{pmnbi8r,pmnbi8x,newlatin}{t1j}{T1}{pmnj}{b}{it}{}
73 \installfontas{pmnbi9d}{T1}{pmnj}{b}{sl}{}
74 \installfontas{pmnb9d}{T1}{pmnj}{b}{sc}{}
75 \installfontas{pmnbi9d}{T1}{pmnj}{b}{si}{}
76 \endinstallfonts

We employ fontinst’s \installfontas macro to provide a complete font
definition file for TS1 encoding, using the TS1 encoded fonts of the pmnx
family:

77 \installfonts
78 \installfamily{TS1}{pmnj}{}
79 \installfontas{pmnr9c}{TS1}{pmnj}{m}{n}{}
80 \installfontas{pmnr9c}{TS1}{pmnj}{m}{sc}{}
81 \installfontas{pmnri9c}{TS1}{pmnj}{m}{it}{}
82 \installfontas{pmnri9c}{TS1}{pmnj}{m}{sl}{}
83 \installfontas{pmnri9c}{TS1}{pmnj}{m}{si}{}
84 \installfontas{pmns9c}{TS1}{pmnj}{sb}{n}{}
85 \installfontas{pmns9c}{TS1}{pmnj}{sb}{sc}{}
86 \installfontas{pmnsi9c}{TS1}{pmnj}{sb}{it}{}
87 \installfontas{pmnsi9c}{TS1}{pmnj}{sb}{sl}{}
88 \installfontas{pmnsi9c}{TS1}{pmnj}{sb}{si}{}
89 \installfontas{pmnb9c}{TS1}{pmnj}{b}{n}{}
90 \installfontas{pmnb9c}{TS1}{pmnj}{b}{sc}{}
91 \installfontas{pmnbi9c}{TS1}{pmnj}{b}{it}{}
92 \installfontas{pmnbi9c}{TS1}{pmnj}{b}{sl}{}
93 \installfontas{pmnbi9c}{TS1}{pmnj}{b}{si}{}
94 \endinstallfonts

In addition to pmnx and pmnj, we add dedicated font families incorporating
inferior and superior figures:

95 \installfonts
96 \installfamily{T1}{pmn0}{}

72 TUTORIAL 6. EXPERT FONT SETS, EXTENDED SETUP

97 \installfont{pmnr09e}{pmnr8r,pmnr8x,newlatin}{inferior,t1}{T1}{pmn0}{m}{n}{}
98 \installfont{pmnri09e}{pmnri8r,pmnri8x,newlatin}{inferior,t1}{T1}{pmn0}{m}{it}{}
99 \installfontas{pmnr09e}{T1}{pmn0}{m}{sc}{}

100 \installfontas{pmnri09e}{T1}{pmn0}{m}{sl}{}
101 \installfontas{pmnri09e}{T1}{pmn0}{m}{si}{}
102 \installfont{pmns09e}{pmns8r,pmns8x,newlatin}{inferior,t1}{T1}{pmn0}{sb}{n}{}
103 \installfont{pmnsi09e}{pmnsi8r,pmnsi8x,newlatin}{inferior,t1}{T1}{pmn0}{sb}{it}{}
104 \installfontas{pmns09e}{T1}{pmn0}{sb}{sc}{}
105 \installfontas{pmnsi09e}{T1}{pmn0}{sb}{sl}{}
106 \installfontas{pmnsi09e}{T1}{pmn0}{sb}{si}{}
107 \installfont{pmnb09e}{pmnb8r,pmnb8x,newlatin}{inferior,t1}{T1}{pmn0}{b}{n}{}
108 \installfont{pmnbi09e}{pmnbi8r,pmnbi8x,newlatin}{inferior,t1}{T1}{pmn0}{b}{it}{}
109 \installfontas{pmnb09e}{T1}{pmn0}{b}{sc}{}
110 \installfontas{pmnbi09e}{T1}{pmn0}{b}{sl}{}
111 \installfontas{pmnbi09e}{T1}{pmn0}{b}{si}{}
112 \endinstallfonts

Since inferior figures are found in the expert fonts, our approach here does
not differ from the one introduced in section 5.3. We also provide a font
definition file for TS1 encoding:

113 \installfonts
114 \installfamily{TS1}{pmn0}{}
115 \installfontas{pmnr9c}{TS1}{pmn0}{m}{n}{}
116 \installfontas{pmnr9c}{TS1}{pmn0}{m}{sc}{}
117 \installfontas{pmnri9c}{TS1}{pmn0}{m}{it}{}
118 \installfontas{pmnri9c}{TS1}{pmn0}{m}{sl}{}
119 \installfontas{pmnri9c}{TS1}{pmn0}{m}{si}{}
120 \installfontas{pmns9c}{TS1}{pmn0}{sb}{n}{}
121 \installfontas{pmns9c}{TS1}{pmn0}{sb}{sc}{}
122 \installfontas{pmnsi9c}{TS1}{pmn0}{sb}{it}{}
123 \installfontas{pmnsi9c}{TS1}{pmn0}{sb}{sl}{}
124 \installfontas{pmnsi9c}{TS1}{pmn0}{sb}{si}{}
125 \installfontas{pmnb9c}{TS1}{pmn0}{b}{n}{}
126 \installfontas{pmnb9c}{TS1}{pmn0}{b}{sc}{}
127 \installfontas{pmnbi9c}{TS1}{pmn0}{b}{it}{}
128 \installfontas{pmnbi9c}{TS1}{pmn0}{b}{sl}{}
129 \installfontas{pmnbi9c}{TS1}{pmn0}{b}{si}{}
130 \endinstallfonts

The same holds true for superior figures:
131 \installfonts
132 \installfamily{T1}{pmn1}{}
133 \installfont{pmnr19e}{pmnr8r,pmnr8x,newlatin}{superior,t1}{T1}{pmn1}{m}{n}{}
134 \installfont{pmnri19e}{pmnri8r,pmnri8x,newlatin}{superior,t1}{T1}{pmn1}{m}{it}{}
135 \installfontas{pmnr19e}{T1}{pmn1}{m}{sc}{}
136 \installfontas{pmnri19e}{T1}{pmn1}{m}{sl}{}
137 \installfontas{pmnri19e}{T1}{pmn1}{m}{si}{}
138 \installfont{pmns19e}{pmns8r,pmns8x,newlatin}{superior,t1}{T1}{pmn1}{sb}{n}{}
139 \installfont{pmnsi19e}{pmnsi8r,pmnsi8x,newlatin}{superior,t1}{T1}{pmn1}{sb}{it}{}
140 \installfontas{pmns19e}{T1}{pmn1}{sb}{sc}{}
141 \installfontas{pmnsi19e}{T1}{pmn1}{sb}{sl}{}
142 \installfontas{pmnsi19e}{T1}{pmn1}{sb}{si}{}
143 \installfont{pmnb19e}{pmnb8r,pmnb8x,newlatin}{superior,t1}{T1}{pmn1}{b}{n}{}
144 \installfont{pmnbi19e}{pmnbi8r,pmnbi8x,newlatin}{superior,t1}{T1}{pmn1}{b}{it}{}
145 \installfontas{pmnb19e}{T1}{pmn1}{b}{sc}{}
146 \installfontas{pmnbi19e}{T1}{pmn1}{b}{sl}{}

6.1. THE FONTINST FILE 73

147 \installfontas{pmnbi19e}{T1}{pmn1}{b}{si}{}
148 \endinstallfonts

And TS1 encoding:
149 \installfonts
150 \installfamily{TS1}{pmn1}{}
151 \installfontas{pmnr9c}{TS1}{pmn1}{m}{n}{}
152 \installfontas{pmnr9c}{TS1}{pmn1}{m}{sc}{}
153 \installfontas{pmnri9c}{TS1}{pmn1}{m}{it}{}
154 \installfontas{pmnri9c}{TS1}{pmn1}{m}{sl}{}
155 \installfontas{pmnri9c}{TS1}{pmn1}{m}{si}{}
156 \installfontas{pmns9c}{TS1}{pmn1}{sb}{n}{}
157 \installfontas{pmns9c}{TS1}{pmn1}{sb}{sc}{}
158 \installfontas{pmnsi9c}{TS1}{pmn1}{sb}{it}{}
159 \installfontas{pmnsi9c}{TS1}{pmn1}{sb}{sl}{}
160 \installfontas{pmnsi9c}{TS1}{pmn1}{sb}{si}{}
161 \installfontas{pmnb9c}{TS1}{pmn1}{b}{n}{}
162 \installfontas{pmnb9c}{TS1}{pmn1}{b}{sc}{}
163 \installfontas{pmnbi9c}{TS1}{pmn1}{b}{it}{}
164 \installfontas{pmnbi9c}{TS1}{pmn1}{b}{sl}{}
165 \installfontas{pmnbi9c}{TS1}{pmn1}{b}{si}{}
166 \endinstallfonts

In order to incorporate the italic swashes we will create an additional font
family called pmnw.

167 \installfonts
168 \installfamily{T1}{pmnw}{}
169 \installfontas{pmnr9d}{T1}{pmnw}{m}{n}{}
170 \installfont{pmnriw9d}{pmnri8r,unsetcaps,pmnriw7a,pmnri8x,newlatin}{t1j}{T1}{pmnw}{m}{it}{}
171 \installfontas{pmnri9d}{T1}{pmnw}{m}{sl}{}
172 \installfontas{pmnrc9d}{T1}{pmnw}{m}{sc}{}
173 \installfontas{pmnric9d}{T1}{pmnw}{m}{si}{}
174 \installfontas{pmns9d}{T1}{pmnw}{sb}{n}{}
175 \installfont{pmnsiw9d}{pmnsi8r,unsetcaps,pmnsiw7a,pmnsi8x,newlatin}{t1j}{T1}{pmnw}{sb}{it}{}
176 \installfontas{pmnsi9d}{T1}{pmnw}{sb}{sl}{}
177 \installfontas{pmnsc9d}{T1}{pmnw}{sb}{sc}{}
178 \installfontas{pmnsic9d}{T1}{pmnw}{sb}{si}{}
179 \installfontas{pmnb9d}{T1}{pmnw}{b}{n}{}
180 \installfontas{pmnbi9d}{T1}{pmnw}{b}{it}{}
181 \installfontas{pmnbi9d}{T1}{pmnw}{b}{sl}{}
182 \installfontas{pmnb9d}{T1}{pmnw}{b}{sc}{}
183 \installfontas{pmnbi9d}{T1}{pmnw}{b}{si}{}
184 \endinstallfonts

We read the respective base font and clear the slots of the capital letters using
the metric file unsetcaps.mtx. After that we add the corresponding swash
font and finally the expert font as usual. We employ t1j.etx to get hanging
figures by default. Since there are only two swash fonts, the remaining shapes
of the pmnw family are taken from pmnj. Our self-made metric file unsetcaps.
mtx uses the \unsetglyph command as follows:
\relax
\metrics
\unsetglyph{A}
\unsetglyph{B}

74 TUTORIAL 6. EXPERT FONT SETS, EXTENDED SETUP

\unsetglyph{C}
...
\unsetglyph{X}
\unsetglyph{Y}
\unsetglyph{Z}
\endmetrics

We are merely clearing the slots of capital letters found in the English alpha-
bet here. Capital letters with an accent are not removed because the Minion
swash set does not provide accented swash capitals anyway. This means that
all accented capital letters will be taken from the ordinary italic font.

185 \installfonts
186 \installfamily{TS1}{pmnw}{}
187 \installfontas{pmnr9c}{TS1}{pmnw}{m}{n}{}
188 \installfontas{pmnr9c}{TS1}{pmnw}{m}{sc}{}
189 \installfontas{pmnri9c}{TS1}{pmnw}{m}{it}{}
190 \installfontas{pmnri9c}{TS1}{pmnw}{m}{sl}{}
191 \installfontas{pmnri9c}{TS1}{pmnw}{m}{si}{}
192 \installfontas{pmns9c}{TS1}{pmnw}{sb}{n}{}
193 \installfontas{pmns9c}{TS1}{pmnw}{sb}{sc}{}
194 \installfontas{pmnsi9c}{TS1}{pmnw}{sb}{it}{}
195 \installfontas{pmnsi9c}{TS1}{pmnw}{sb}{sl}{}
196 \installfontas{pmnsi9c}{TS1}{pmnw}{sb}{si}{}
197 \installfontas{pmnb9c}{TS1}{pmnw}{b}{n}{}
198 \installfontas{pmnb9c}{TS1}{pmnw}{b}{sc}{}
199 \installfontas{pmnbi9c}{TS1}{pmnw}{b}{it}{}
200 \installfontas{pmnbi9c}{TS1}{pmnw}{b}{sl}{}
201 \installfontas{pmnbi9c}{TS1}{pmnw}{b}{si}{}
202 \endinstallfonts

After creating a font definition file for TS1 encoding, our setup for the text
fonts is complete.

6.2 Installing text ornaments

The Minion expert package also includes a dedicated ornament font, pmnrp.
pfb. As discussed before in section 4.4, we do not really need fontinst when
installing symbol fonts. But since we require a map file and a font definition
file as well, using fontinst is in fact easier than running afm2tfm and creating
the auxiliary files manually:

203 \installfonts
204 \installfamily{U}{pmnp}{}
205 \installrawfont{pmnrp}{pmnrp}{txtfdmns,pmnrp mtxasetx}{U}{pmnp}{m}{n}{}
206 \endinstallfonts

And finally, we terminate our driver properly:
207 \endrecordtransforms
208 \bye

6.3. EXTENDING THE USER INTERFACE 75

6.3 Extending the user interface

Before creating a style file for Minion, we will update nfssext.sty one more
time to support its additional features. Support for swashes is easily added
since the framework is already in place. Therefore, the first part of the file
does not require any changes, we simply add support for swashes by defining
\swstyle in a similar vein (40–42):

1 \NeedsTeXFormat{LaTeX2e}
2 \ProvidesPackage{nfssext}[2003/03/14 v1.2 Experimental NFSS Extensions]
3 \newcommand*{\exfs@tempa}{}
4 \newcommand*{\exfs@tempb}{}
5 \newcommand*{\exfs@try@family}[2][]{%
6 \let\exfs@tempa\relax
7 \begingroup
8 \fontfamily{#2}\try@load@fontshape
9 \expandafter\ifx\csname\curr@fontshape\endcsname\relax

10 \edef\exfs@tempa{#1}%
11 \ifx\exfs@tempa\@empty
12 \PackageWarning{nfssext}{%
13 Font family ’\f@encoding/#2’ not available\MessageBreak
14 Ignoring font switch}%
15 \else
16 \PackageInfo{nfssext}{%
17 Font family ’\f@encoding/#2’ not available\MessageBreak
18 Font family ’\f@encoding/#1’ tried instead}%
19 \exfs@try@family{#1}%
20 \fi
21 \else
22 \gdef\exfs@tempa{\fontfamily{#2}\selectfont}%
23 \fi
24 \endgroup
25 \exfs@tempa}
26 \def\exfs@get@base#1#2#3#4\@nil{#1#2#3}
27 \DeclareRobustCommand{\lnstyle}{%
28 \not@math@alphabet\lnstyle\relax
29 \exfs@try@family[\expandafter\exfs@get@base\f@family\@nil]%
30 {\expandafter\exfs@get@base\f@family\@nil x}}
31 \DeclareRobustCommand{\osstyle}{%
32 \not@math@alphabet\osstyle\relax
33 \exfs@try@family{\expandafter\exfs@get@base\f@family\@nil j}}
34 \DeclareRobustCommand{\instyle}{%
35 \not@math@alphabet\instyle\relax
36 \exfs@try@family{\expandafter\exfs@get@base\f@family\@nil 0}}
37 \DeclareRobustCommand{\sustyle}{%
38 \not@math@alphabet\sustyle\relax
39 \exfs@try@family{\expandafter\exfs@get@base\f@family\@nil 1}}
40 \DeclareRobustCommand{\swstyle}{%
41 \not@math@alphabet\swstyle\relax
42 \exfs@try@family{\expandafter\exfs@get@base\f@family\@nil w}}

Adding thorough support for italic small caps is not quite as easy. The prob-
lem is that the creators of the nfss apparently did not think of italic small
caps when putting italics and small caps in the same category. Since both
variants are on the shape axis of the nfss they are mutually exclusive. While

76 TUTORIAL 6. EXPERT FONT SETS, EXTENDED SETUP

this will not keep us from using \fontshape to select italic small caps explic-
itly, nesting \scshape and \itshape does not have the desired effect. When
nested, these macros simply override each other instead of switching to italic
small caps. This problem is not as exotic as it may seem because italic small
caps are hardly ever used explicitly. Typically, they come into play when
small caps and italics are mixed on the same line. For example, think of a
page header which is set in small caps, containing a highlighted word set in
italics; or an italic section heading with an acronym set in small caps. To
work around this problem, we will have to redefine a few nfss macros. But
first of all, we will add a macro for explicit switching to italic small caps.

43 \newcommand*{\sidefault}{si}

Note that the nfss does not use fixed shape codes like it and sc for the
italic and the small caps shape, but rather macros like \itdefault and
\scdefault. We will handle italic small caps in a similar way by defining
\sidefault, which defaults to si. Now let us define \sishape for explicit
switching to italic small caps:

44 \DeclareRobustCommand{\sishape}{%
45 \not@math@alphabet\sishape\relax
46 \fontshape\sidefault\selectfont}

While we are able to typeset italic small caps by selecting them explicitly,
macros like \itshape and \scshape will simply ignore the new shape. Hence
we redefine these macros to make them take advantage of italic small caps
transparently. In order to do so, we need a macro that will merge properties
of the shape axis, thereby allowing us to treat italics and small caps as if
they were not on the same axis:

47 \newcommand*{\exfs@merge@shape}[3]{%
48 \edef\exfs@tempa{#1}%
49 \edef\exfs@tempb{#2}%
50 \ifx\f@shape\exfs@tempb
51 \expandafter\ifx\csname\f@encoding/\f@family/\f@series/#3\endcsname\relax
52 \else
53 \edef\exfs@tempa{#3}%
54 \fi
55 \fi
56 \fontshape{\exfs@tempa}\selectfont}

This macro will switch to the font shape given as the first argument unless
the current shape is identical to the one indicated by the second argument.
In this case it will switch to the shape designated by the third argument
instead, provided that it is available for the current font family. With this
macro at hand we redefine \itshape:

57 \DeclareRobustCommand{\itshape}{%
58 \not@math@alphabet\itshape\mathit
59 \exfs@merge@shape{\itdefault}{\scdefault}{\sidefault}}

6.3. EXTENDING THE USER INTERFACE 77

Essentially, \itshape will switch to the font shape it unless the current
shape is sc, in which case it will switch to si instead, provided that si is
available. \scshape does it the other way around:

60 \DeclareRobustCommand{\scshape}{%
61 \not@math@alphabet\scshape\relax
62 \exfs@merge@shape{\scdefault}{\itdefault}{\sidefault}}

We also redefine \upshape to make it switch to sc instead of n if the current
shape is si:

63 \DeclareRobustCommand{\upshape}{%
64 \not@math@alphabet\upshape\relax
65 \exfs@merge@shape{\updefault}{\sidefault}{\scdefault}}

If no italic small caps are available, all of these macros will behave like they
did before, making them suitable for global use. While we are at it, we also
define a new macro, \dfshape, that will reset the current shape to the default
(n unless \shapedefault has been redefined) regardless of the current shape:

66 \DeclareRobustCommand{\dfshape}{%
67 \not@math@alphabet\dfshape\relax
68 \fontshape\shapedefault\selectfont}

Before we add text commands for our new font switches, there is still one
thing left to do. The macro \swstyle, which we have defined above (40–42),
will switch to the font family providing italic swashes (for example, pmnw).
However, it will not activate the italic shape. It would be convenient to have
a macro which takes care of all of that. We first create an auxiliary macro
holding the shape which provides the actual swashes:

69 \newcommand*{\swshapedefault}{\itdefault}

Then we create a macro which will call \swstyle and select the shape pro-
viding the italic swashes in one shot:

70 \DeclareRobustCommand{\swshape}{%
71 \not@math@alphabet\swshape\relax
72 \swstyle\fontshape\swshapedefault\selectfont}

Finally, we add text commands for our new font switches:
73 \DeclareTextFontCommand{\textln}{\lnstyle}
74 \DeclareTextFontCommand{\textos}{\osstyle}
75 \DeclareTextFontCommand{\textin}{\instyle}
76 \DeclareTextFontCommand{\textsu}{\sustyle}
77 \DeclareTextFontCommand{\textsi}{\sishape}
78 \DeclareTextFontCommand{\textdf}{\dfshape}
79 \DeclareTextFontCommand{\textsw}{\swshape}

As far as text is concerned, all features of Minion are readily available at this
point. Using the ornaments would still require low-level commands, though.

78 TUTORIAL 6. EXPERT FONT SETS, EXTENDED SETUP

6.4 A high-level interface for ornaments

Technically, ornament fonts are comparable to the euro fonts discussed in
section 4.3. To typeset the first ornament of Minion, for example, we could
use the following command:
{\usefont{U}{pmnp}{m}{n}\char 97}

As this is rather awkward and requires looking at the afm file to find out the
encoding slot of each ornament, we will implement a higher-level solution.
The problem is that ornament fonts do not conform to any encoding, so there
is no standard we could rely on as far as the order of the glyphs in the font
is concerned. We have to provide this information explicitly in minion.sty.
To facilitate this, we define the following macro:

80 \newcommand*{\DeclareTextOrnament}[7]{%
81 \expandafter\def\csname#1@orn\@roman#2\endcsname{#3/#4/#5/#6/#7}}

To declare the first ornament of Minion, this macro would be employed as
follows:
\DeclareTextOrnament{pmn}{1}{U}{pmnp}{m}{n}{97}

We use the first three letters of the font family name as an identifier (pmn) and
assign a number (1 in this case) to the ornament defined by the remaining
arguments. These arguments form a complete font declaration with a syntax
similar to that of the nfss macro \DeclareFontShape. The last argument is
the encoding slot of the ornament (97 here) as given in the afm file. You might
wonder why we use a complete font declaration here. Since all ornaments
are located in the same font, using the same encoding, series, and shape,
this seems to be redundant. In this case, this is actually true. The problem
is that ornaments are not necessarily provided in dedicated fonts. Adobe
Garamond, for example, comes with ornaments which are included in some
of the alternate text fonts so we use a complete declaration for maximum
flexibility. Internally, the ornaments are saved in a format modeled after the
way the nfss handles font shapes. When typesetting an ornament later, we
need a macro to parse this font declaration:

82 \begingroup
83 \catcode‘\/=12
84 \gdef\exfs@split@orndef#1/#2/#3/#4/#5\@nil{%
85 \def\f@encoding{#1}%
86 \def\f@family{#2}%
87 \def\f@series{#3}%
88 \def\f@shape{#4}%
89 \def\exfs@tempa{#5}}
90 \endgroup

6.5. AN EXTENDED STYLE FILE 79

Since we use the base of the font family name as an identifier, we also need
a macro that expands to the first three letters of the current font family:

91 \def\exfs@base@family{\expandafter\exfs@get@base\f@family\@nil}

Now we can finally implement a user macro that actually typesets the orna-
ment. We will simply call it \ornament:

92 \DeclareRobustCommand{\ornament}[1]{%
93 \expandafter\ifx\csname\exfs@base@family @orn\@roman#1\endcsname\relax
94 \PackageWarning{nfssext}{%
95 Ornament #1 undefined for font family ’\exfs@base@family’\MessageBreak
96 Setting debug mark}%
97 \rule{1ex}{1ex}%
98 \else
99 \begingroup

100 \edef\exfs@tempb{\csname\exfs@base@family @orn\@roman#1\endcsname}%
101 \expandafter\expandafter\expandafter\exfs@split@orndef
102 \expandafter\string\exfs@tempb\@nil
103 \selectfont\char\exfs@tempa
104 \endgroup
105 \fi}
106 \endinput

First of all, we check if the desired ornament has been declared (93) and issue
a warning if not (94–96). We also typeset a mark (97) to facilitate debugging
in this case. If it has been declared, we expand and parse the declaration
(100–102), switch fonts, and typeset the ornament (103). We use grouping
to keep the font change local.

6.5 An extended style file

The style file for Minion is similar to the ones suggested in section 3.2 and
5.4. The only difference is the declaration of the text ornaments. This is the
first part of minion.sty:

1 \NeedsTeXFormat{LaTeX2e}
2 \ProvidesPackage{minion}[2003/03/25 v1.0 Adobe Minion]
3 \RequirePackage[T1]{fontenc}
4 \RequirePackage{textcomp}
5 \RequirePackage{nfssext}
6 \DeclareOption{oldstyle}{\renewcommand*{\rmdefault}{pmnj}}
7 \DeclareOption{lining}{\renewcommand*{\rmdefault}{pmnx}}
8 \ExecuteOptions{oldstyle}
9 \ProcessOptions*

When declaring the text ornaments, we take the encoding slot numbers from
the respective afm file:
C 97 ; WX 885 ; N ornament1 ; B 50 -65 835 744 ;
C 98 ; WX 1036 ; N ornament2 ; B 50 4 986 672 ;
C 99 ; WX 1066 ; N ornament3 ; B 50 -106 1016 745 ;
C 100 ; WX 866 ; N ornament4 ; B 50 98 816 534 ;

80 TUTORIAL 6. EXPERT FONT SETS, EXTENDED SETUP

C 101 ; WX 390 ; N ornament5 ; B 50 86 341 550 ;

We add a declaration for each ornament:
10 \DeclareTextOrnament{pmn}{1}{U}{pmnp}{m}{n}{97}
11 \DeclareTextOrnament{pmn}{2}{U}{pmnp}{m}{n}{98}
12 \DeclareTextOrnament{pmn}{3}{U}{pmnp}{m}{n}{99}
13 \DeclareTextOrnament{pmn}{4}{U}{pmnp}{m}{n}{100}
14 \DeclareTextOrnament{pmn}{5}{U}{pmnp}{m}{n}{101}
15 \DeclareTextOrnament{pmn}{6}{U}{pmnp}{m}{n}{102}
16 \DeclareTextOrnament{pmn}{7}{U}{pmnp}{m}{n}{103}
17 \DeclareTextOrnament{pmn}{8}{U}{pmnp}{m}{n}{104}
18 \DeclareTextOrnament{pmn}{9}{U}{pmnp}{m}{n}{105}
19 \DeclareTextOrnament{pmn}{10}{U}{pmnp}{m}{n}{106}
20 \DeclareTextOrnament{pmn}{11}{U}{pmnp}{m}{n}{107}
21 \DeclareTextOrnament{pmn}{12}{U}{pmnp}{m}{n}{108}
22 \DeclareTextOrnament{pmn}{13}{U}{pmnp}{m}{n}{109}
23 \DeclareTextOrnament{pmn}{14}{U}{pmnp}{m}{n}{110}
24 \DeclareTextOrnament{pmn}{15}{U}{pmnp}{m}{n}{111}
25 \DeclareTextOrnament{pmn}{16}{U}{pmnp}{m}{n}{112}
26 \DeclareTextOrnament{pmn}{17}{U}{pmnp}{m}{n}{113}
27 \DeclareTextOrnament{pmn}{18}{U}{pmnp}{m}{n}{114}
28 \DeclareTextOrnament{pmn}{19}{U}{pmnp}{m}{n}{115}
29 \DeclareTextOrnament{pmn}{20}{U}{pmnp}{m}{n}{116}
30 \DeclareTextOrnament{pmn}{21}{U}{pmnp}{m}{n}{117}
31 \DeclareTextOrnament{pmn}{22}{U}{pmnp}{m}{n}{118}
32 \DeclareTextOrnament{pmn}{23}{U}{pmnp}{m}{n}{119}
33 \endinput

As mentioned before, Adobe Garamond features ornaments in the alternate
text fonts, requiring a complete font declaration. In this case, the definitions
would look as follows:
\DeclareTextOrnament{pad}{1}{U}{pada}{m}{n}{49}
\DeclareTextOrnament{pad}{2}{U}{pada}{m}{n}{50}
\DeclareTextOrnament{pad}{3}{U}{pada}{m}{it}{49}

Note that the ornament macro is deliberately designed to be sensitive to
the active font family. When using Minion, \ornament{1} will typeset the
first ornament of Minion. When using Adobe Garamond, the same command
sequence will typeset an ornament taken from Adobe Garamond. If you would
like to use the ornaments in a font independent manner, you can always go
back to lower-level commands which merely depend on a font definition file
(upmnp.fd and upada.fd here) for the respective ornament font:
{\usefont{U}{pmnp}{m}{n}\char 97}
{\usefont{U}{pada}{m}{n}\char 49}

Tutorial 7

Creating map files

With the advent of fontinst 1.9, the tedious and error-prone task of creating
map files manually should finally be a thing of the past. As outlined in section
1.5, fontinst can now do most of the work for us. Generally speaking, dvi and
pdf drivers do not share a common map file format. For dvips, the syntax
of map files is explained in detail in the dvips manual.1 For pdfTeX, it is
is explained in the pdfTeX manual, and for xdvi in the documentation that
comes with the source distribution of xdvi. As of this writing (December
2004), map file support in fontinst is restricted to dvips and dvipdfm. Unless
the map files contain unusual PostScript instructions, however, xdvi and pdf-
TeX are capable of using dvips’ files, hence fontinst’s map file generator for
dvips covers more than just dvips.

Since map files are a crucial part in the process of transforming a LaTeX
source file into a screen image or a printed document, understanding their
format is still a must when debugging a malfunctioning TeX installation or
dealing with very unusual installation scenarios. While the other tutorials
in this guide rely on fontinst’s map file generator, this tutorial will focus on
building a map file manually. The format presented here is a subset of the
syntax supported by dvips which will also work with pdfTeX and xdvi.

7.1 The syntax of map files

In tutorials 1 and 2 we have dealt with a typical installation scenario, the
base package of Adobe Sabon. The map file was generated by fontinst’s built-
in map file writer. In the following, we will go over all the steps required to
build this map file manually. The Sabon base package provides four fonts:
regular, regular italic, bold, and bold italic. Both the \latinfamily macro

1http://www.radicaleye.com/dvipsman/

81

http://www.radicaleye.com/dvipsman/

82 TUTORIAL 7. CREATING MAP FILES

employed in tutorial 1 and the lower-level fontinst file introduced in tutorial
2 will create slanted versions of the upright regular and bold fonts in addition
to that. Therefore, we need to provide mapping records for a total of six fonts.
Let us take a look at the complete map file before going over the individual
lines:
psbr8r Sabon-Roman <8r.enc <psbr8a.pfb "TeXBase1Encoding ReEncodeFont"
psbri8r Sabon-Italic <8r.enc <psbri8a.pfb "TeXBase1Encoding ReEncodeFont"
psbb8r Sabon-Bold <8r.enc <psbb8a.pfb "TeXBase1Encoding ReEncodeFont"
psbbi8r Sabon-BoldItalic <8r.enc <psbbi8a.pfb "TeXBase1Encoding ReEncodeFont"
psbro8r Sabon-Roman <8r.enc <psbr8a.pfb "TeXBase1Encoding ReEncodeFont 0.167 SlantFont"
psbbo8r Sabon-Bold <8r.enc <psbb8a.pfb "TeXBase1Encoding ReEncodeFont 0.167 SlantFont"

Map files for dvips consist of up to three segments. The first segment is the
name of the raw TeX font without any file suffix:
psbr8r Sabon-Roman <8r.enc <psbr8a.pfb "TeXBase1Encoding ReEncodeFont"

Note that both fontinst’s built-in \latinfamily macro and all lower-level in-
stallation recipes suggested in this guide share a fundamental step: all regular
text fonts are reencoded from Adobe Standard encoding (Fontname code 8a)
to TeX Base 1 (8r) before any virtual fonts are built. Therefore, the name of
the raw TeX font corresponds to the one of the pfb file with encoding code
8r instead of 8a:
psbr8r Sabon-Roman <8r.enc <psbr8a.pfb "TeXBase1Encoding ReEncodeFont"
psbri8r Sabon-Italic <8r.enc <psbri8a.pfb "TeXBase1Encoding ReEncodeFont"
psbb8r Sabon-Bold <8r.enc <psbb8a.pfb "TeXBase1Encoding ReEncodeFont"
psbbi8r Sabon-BoldItalic <8r.enc <psbbi8a.pfb "TeXBase1Encoding ReEncodeFont"

The second segment is the PostScript name of the font:
psbr8r Sabon-Roman <8r.enc <psbr8a.pfb "TeXBase1Encoding ReEncodeFont"

Do not try to guess the right name or copy it from some map file you found
somewhere on the web some time ago. If your font is included in one of the
foundry-specific lists of the Fontname scheme, the PostScript name is given
in the second column of the respective table. If it is not or if you are in doubt,
the PostScript name should be taken from the header of the afm file for every
font. Here are a few lines from psbr8a.afm:
StartFontMetrics 2.0
Comment Copyright (c) 1989 Adobe Systems Incorporated. All Rights Reserved.
Comment Creation Date:Fri Mar 10 16:47:51 PST 1989
FontName Sabon-Roman
FullName 12 Sabon* Roman 05232
FamilyName Sabon
EncodingScheme AdobeStandardEncoding

The relevant part is the line starting with ‘FontName’. The PostScript name
of this font is ‘Sabon-Roman’. For each font, we copy this name verbatim to
the map file:

7.1. THE SYNTAX OF MAP FILES 83

psbr8r Sabon-Roman <8r.enc <psbr8a.pfb "TeXBase1Encoding ReEncodeFont"
psbri8r Sabon-Italic <8r.enc <psbri8a.pfb "TeXBase1Encoding ReEncodeFont"
psbb8r Sabon-Bold <8r.enc <psbb8a.pfb "TeXBase1Encoding ReEncodeFont"
psbbi8r Sabon-BoldItalic <8r.enc <psbbi8a.pfb "TeXBase1Encoding ReEncodeFont"

The third segment of our map file consists of a list of options. Options are
either files to be embedded in the PostScript code or PostScript instructions
enclosed in double quotes:
psbr8r Sabon-Roman <8r.enc <psbr8a.pfb "TeXBase1Encoding ReEncodeFont"

First of all, we need to include a list of files that dvips will embed in the
PostScript file. In this case, we need the PostScript encoding vector 8r.enc
for TeX Base 1 encoding and the pfb files, since we want the fonts to be
embedded in the PostScript file:
psbr8r Sabon-Roman <8r.enc <psbr8a.pfb "TeXBase1Encoding ReEncodeFont"
psbri8r Sabon-Italic <8r.enc <psbri8a.pfb "TeXBase1Encoding ReEncodeFont"
psbb8r Sabon-Bold <8r.enc <psbb8a.pfb "TeXBase1Encoding ReEncodeFont"
psbbi8r Sabon-BoldItalic <8r.enc <psbbi8a.pfb "TeXBase1Encoding ReEncodeFont"

Our last option is a PostScript reencoding instruction. As mentioned above,
the \latinfamily macro and our lower-level fontinst driver files reencode all
fonts from Adobe Standard encoding to TeX Base 1 when creating metric
files for TeX. This affects the metrics only, which are defined in the tfm files
generated by fontinst, while the glyph outlines as defined in the pfb file still
use the font’s native encoding. Therefore, we add a reencoding directive to
the map file that will instruct all applications dealing with the actual glyph
outlines to reencode them accordingly:
psbr8r Sabon-Roman <8r.enc <psbr8a.pfb "TeXBase1Encoding ReEncodeFont"

Where do we get the string TeXBase1Encoding from? It is the PostScript
name of the encoding vector, as defined in 8r.enc. If you open the file 8r.enc
in a text editor, you will see a header consisting of comments concerning TeX
Base 1 encoding. After that, the definition of the encoding vector begins as
follows:
% Comments
/TeXBase1Encoding [
/.notdef /dotaccent /fi /fl
/fraction /hungarumlaut /Lslash /lslash

Note that the T1 and TS1 encodings are used for the virtual fonts only, they
are what TeX will work with. A PostScript file created by dvips, however,
does not contain any virtual fonts. They will have been resolved into the raw
fonts they are based on by dvips. The raw fonts used to build virtual ones
were reencoded to TeX Base 1 encoding during the installation. But this reen-
coding step affects the font metrics only while the pfb files embedded in the
PostScript code still use Adobe Standard as their native encoding. Therefore

84 TUTORIAL 7. CREATING MAP FILES

every application reading the final file has to repeat the reencoding step for
the font outlines before rendering the fonts. This is what the PostScript reen-
coding instruction is all about. Since we cannot expect every application to
know about TeX Base 1 encoding, we embed the respective encoding vector
(8r.enc) along with the fonts. Compare the first \transformfont command
in the verbose fontinst file discussed in section 2.1 to the corresponding line
of the map file:
\transformfont{psbr8r} {\reencodefont{8r} {\fromafm{psbr8a}}}

psbr8r Sabon-Roman "TeXBase1Encoding ReEncodeFont" <8r.enc <psbr8a.pfb

In addition to the base fonts provided by the Sabon package, we need to tell
dvips about any slanted versions created by fontinst. We copy the lines for
Sabon-Roman and Sabon-Bold and insert o, the Fontname code for slanted
fonts, after the weight code of the TeX font name. Note that the name of the
pfb file does not change:
psbro8r Sabon-Roman <8r.enc <psbr8a.pfb "TeXBase1Encoding ReEncodeFont 0.167 SlantFont"
psbbo8r Sabon-Bold <8r.enc <psbb8a.pfb "TeXBase1Encoding ReEncodeFont 0.167 SlantFont"

We also add a ‘SlantFont’ instruction. By default, \latinfamily uses a slant
factor of 0.167 when creating the modified metrics:
psbro8r Sabon-Roman <8r.enc <psbr8a.pfb "TeXBase1Encoding ReEncodeFont 0.167 SlantFont"
psbbo8r Sabon-Bold <8r.enc <psbb8a.pfb "TeXBase1Encoding ReEncodeFont 0.167 SlantFont"

Note that the font files embedded in the PostScript file are not slanted, they
are upright. Fontinst performs the slanting for the font metrics only, it does
not touch the font outlines at all. The slanting of the glyph outlines will be
performed by a PostScript printer or an interpreter like Ghostscript. After
resolving the virtual fonts, all that dvips does as far as the raw fonts are
concerned is reading the files listed in the map file and embedding them
along with the slanting instruction. The transformation of the glyph outlines
takes place when the PostScript code is rendered on screen or on paper.
Both ‘ReEncodeFont’ and ‘SlantFont’ are instructions for the application
performing the final rendering. The value of the slanting instruction has to
correspond to the slant factor used in the fontinst file. As mentioned above,
fontinst’s representation of the slant factor is slightly different. The value used
in the map file is a real number corresponding to fontinst’s (integer) slant
factor divided by 1000. Its precision is therefore limited to three decimal
places. Going back to the fontinst file discussed in section 2.1 once again,
compare a line of the map file to the corresponding line of the fontinst file:
\transformfont{psbro8r}{\slantfont{167}\reencodefont{8r} {\fromafm{psbr8a}}}
psbro8r Sabon-Roman "0.167 SlantFont TeXBase1Encoding ReEncodeFont" <8r.enc <psbr8a.pfb

Essentially, think of map files as a way of recording all encoding and shape
modifications applied to the font metrics during the installation, so that they

7.2. EXPERT AND SYMBOL FONTS 85

can be repeated for the font outlines when the final PostScript file is displayed
or printed. This information is required for the raw fonts only because all the
information concerning the virtual fonts is contained in the virtual font files.
When using dvi or pdf as the final output format, the division of labor
between the various tools involved differs since pdfTeX combines the roles of
TeX and dvips, while dvi viewers deal with both the virtual fonts and the
rendering of the font outlines on screen. The principle, however, remains the
same. Therefore pdfTeX and xdvi require map files as well.

Technically, so-called sc & osf fonts like those discussed in tutorial 3 are
regular text fonts as well. While they are a little bit more difficult to install
than other text fonts, their map file records do not differ from other fonts at
all. Here is a map file for the extended Sabon set in tutorial 3:
psbr8r Sabon-Roman <8r.enc <psbr8a.pfb "TeXBase1Encoding ReEncodeFont"
psbri8r Sabon-Italic <8r.enc <psbri8a.pfb "TeXBase1Encoding ReEncodeFont"
psbb8r Sabon-Bold <8r.enc <psbb8a.pfb "TeXBase1Encoding ReEncodeFont"
psbbi8r Sabon-BoldItalic <8r.enc <psbbi8a.pfb "TeXBase1Encoding ReEncodeFont"
psbrc8r Sabon-RomanSC <8r.enc <psbrc8a.pfb "TeXBase1Encoding ReEncodeFont"
psbrij8r Sabon-ItalicOsF <8r.enc <psbrij8a.pfb "TeXBase1Encoding ReEncodeFont"
psbbj8r Sabon-BoldOsF <8r.enc <psbbj8a.pfb "TeXBase1Encoding ReEncodeFont"
psbbij8r Sabon-BoldItalicOsF <8r.enc <psbbij8a.pfb "TeXBase1Encoding ReEncodeFont"
psbro8r Sabon-Roman <8r.enc <psbr8a.pfb "TeXBase1Encoding ReEncodeFont 0.167 SlantFont"
psbbo8r Sabon-Bold <8r.enc <psbb8a.pfb "TeXBase1Encoding ReEncodeFont 0.167 SlantFont"
psbrco8r Sabon-RomanSC <8r.enc <psbrc8a.pfb "TeXBase1Encoding ReEncodeFont 0.167 SlantFont"
psbboj8r Sabon-BoldOsF <8r.enc <psbbj8a.pfb "TeXBase1Encoding ReEncodeFont 0.167 SlantFont"

Note that there is a slanted version of the small caps font even though we
did not make the slanted small caps available under LaTeX in tutorial 3. We
need it to provide matching figures for the slanted shape of the psbj family,
which has to take regular-weight hanging figures from the small caps font.

7.2 Expert and symbol fonts

Map file records for expert and symbol fonts are simpler than those of text
fonts. There is no ‘ReEncodeFont’ instruction and no encoding vector because
such fonts are usually not reencoded. A map file for the Euro fonts discussed
in section 4.4, for example, would include the following lines:
zpeur EuroSerif-Regular <zpeur.pfb
zpeuri EuroSerif-Italic <zpeuri.pfb
zpeub EuroSerif-Bold <zpeub.pfb
zpeubi EuroSerif-BoldItalic <zpeubi.pfb

We still need to add ‘SlantFont’ instructions for the slanted shapes:
zpeuro EuroSerif-Regular <zpeur.pfb "0.167 SlantFont"
zpeubo EuroSerif-Bold <zpeub.pfb "0.167 SlantFont"

86 TUTORIAL 7. CREATING MAP FILES

The Janson expert fonts discussed in tutorial 5 would be mapped in a similar
way:
mjnr8x JansonExpertMT <mjnr8x.pfb
mjnri8x JansonExpertMT-Italic <mjnri8x.pfb
mjnb8x JansonExpertMT-Bold <mjnb8x.pfb
mjnbi8x JansonExpertMT-BoldItalic <mjnbi8x.pfb
mjnro8x JansonExpertMT <mjnr8x.pfb "0.167 SlantFont"
mjnbo8x JansonExpertMT-Bold <mjnb8x.pfb "0.167 SlantFont"

In addition to expert fonts, the Minion fonts discussed in tutorial 6 include
swash and symbol fonts which are also mapped like that because they were
not reencoded:
pmnriw7a Minion-SwashItalic <pmnriw7a.pfb
pmnsiw7a Minion-SwashSemiboldItalic <pmnsiw7a.pfb
pmnrp Minion-Ornaments <pmnrp.pfb

Appendix

87

Appendix A

Code tables

The tables on the following pages are intended to give an idea of how the codes
of the Fontname scheme relate to those used by LaTeX’s font selection scheme
(nfss). The Fontname codes are what we use when renaming the font files
during the installation while the nfss codes are what we need when selecting
a certain font under LaTeX later. Sticking to the nfss codes listed below is
not a technical requirement for a functional font installation. When using
the \latinfamily macro, fontinst will indeed use these nfss codes. When
employing low-level fontinst commands, however, the nfss font declaration
is controlled by the last five arguments of the \installfont command. In
theory, we could use an arbitrary code and the nfss would handle that just
fine. It is still highly recommended to stick to these codes to avoid confusion
and incompatibility. Two dashes in one of the table cells indicate that there is
no customary code for this font property in the respective scheme whereas a
blank cell means that the code is omitted. Properties which are not catered
for by the \latinfamily macro are marked with an asterisk in the last
column.

Please note that Fontname codes and nfss codes cannot be mapped on
a one-to-one basis in all cases since the two schemes are rather different in
concept. Weights and widths, which are treated separately by the Fontname
scheme, need to be concatenated and handled as a ‘series’ when using the
nfss since the latter does not have independent categories (‘axes’) for weight
and width. The ‘variant’ category of the Fontname scheme on the other hand,
which embraces several different properties including shapes like italics as
well as special glyph sets such as small caps or alternative figures, does not
correspond to a single nfss axis. Some variants, like italics and small caps
for example, are mapped to the ‘shape’ axis of the nfss. Others, such as
alternative figures, are handled in completely different ways. Table A.3 lists
variants corresponding to the most common nfss shapes only. When looking

89

90 APPENDIX A. CODE TABLES

weight fontname code nfss series

ultra light, thin, hairline a ul*
extra light j el*
light l l
book k m
regular r m
medium m mb
demibold d db
semibold s sb
bold b b
heavy h eb
black c eb
extra bold, extra black x eb
ultra bold, ultra black u ub
poster p --*

Table A.1: Codes for font weights

at the documentation of the Fontname scheme, you will find a lot more
variant codes not mentioned here. Although they are used for file naming,
they do not, or, at least do not necessarily correspond to a customary nfss
shape. Hanging, inferior, and superior numbers (Fontname codes j, 0, and 1),
for example, are treated as ‘variants’ by the Fontname scheme but they are
usually implemented as independent font families on the level of the nfss.
For the encodings listed in table A.4 the situation is similar. For example,
a virtual font in T1 encoding featuring expert glyphs is indicated by adding
9e to the file name. However, on the level of the nfss the encoding code is
T1 for all T1 encoded fonts and the fact that the font provides expert glyphs
is expressed by adding the letter x to the font family name.

91

width fontname code nfss series

ultra compressed u uc*
ultra condensed o uc*
extra compressed, extra condensed q ec*
compressed p c*
condensed c c*
narrow n c
regular
extended x x*
expanded e x*
extra expanded v ex*
ultra expanded -- ux*
wide w --*

Table A.2: Codes for font widths

variant fontname code nfss shape

normal, upright, roman n
italic i it
oblique, slanted o sl
small caps c sc
italic small caps ic si*
upright italic -- ui*
outline l ol*

Table A.3: Codes for font variants

encoding fontname code nfss encoding

Adobe Standard 8a 8a
Expert 8x 8x
TeX Base 1 8r 8r
TeX Text 7t OT1
TeX Tex with expert set 9t OT1
TeX Text with expert set and osf 9o OT1
Cork 8t T1
Cork with expert set 9e T1
Cork with expert set and osf 9d T1
Text Companion 8c TS1
Text Companion with expert set 9c TS1

Table A.4: Codes for font encodings

92 APPENDIX A. CODE TABLES

Appendix B

Text companion symbols

The symbol lists in this appendix give an overview of the symbols defined
in TS1 encoding and the corresponding text commands provided by the
textcomp package. Please note that regular PostScript fonts will not provide
the full range of text companion symbols. Some parts of the TS1 encoding
are rather exotic and specific to fonts which were created with TeX and TS1
encoding in mind.

B.1 Symbols in text fonts

The text companion symbols in the following list will usually be available
when installing common PostScript fonts based on Adobe Standard encoding.
Some symbols are marked with an asterisk. They are not found as such in
PostScript text fonts but fontinst will try to fake them, using glyphs which are
almost always included in such fonts. In order to create a centered asterisk,
for example, fontinst uses the regular asterisk and tries to center it vertically.
The quality of the result depends on the particular glyph and the given font.
For example, creating a composite centigrade symbol by combining the degree
sign with the capital letter ‘C’ should always work. On the other hand, faking
something like double brackets depends on certain assumptions concerning
the dimensions of the brackets provided by the font. These assumptions may
or may not apply to a given font. The euro symbol is a special case since
it is not included in Adobe Standard encoding. If a font provides a native
euro symbol, however, it will usually be included in the base fonts. If there
is no euro symbol at all, fontinst tries to fake it by overstriking the capital
letter ‘C’ with two horizontal bars as a last resort. In this case, the quality
of the result will vary significantly from typeface to typeface. Please refer to
tutorial 4 for a more detailed discussion of issues related to the euro symbol.

93

94 APPENDIX B. TEXT COMPANION SYMBOLS

\textacutedbl ˝ \textasciiacute ´
\textasciibreve ˘ \textasciicaron ˇ
\textasciidieresis ¨ \textasciigrave `
\textasciimacron ¯ \textasteriskcentered* ∗
\textbardbl* ‖ \textbrokenbar ¦
\textbullet • \textcelsius* ℃
\textcent ¢ \textcopyright ©
\textcurrency ¤ \textdaggerdbl ‡
\textdagger † \textdegree °
\textdiv ÷ \textdollar $
\texteuro* € \textflorin ƒ
\textfractionsolidus ⁄ \textgravedbl 
\textinterrobangdown* � \textinterrobang* �
\textlbrackdbl* [\textlnot ¬
\textminus − \textmu µ
\textonehalf ½ \textonequarter ¼
\textonesuperior ¹ \textordfeminine ª
\textordmasculine º \textparagraph ¶
\textperiodcentered · \textperthousand ‰
\textpm ± \textquotesingle '
\textrbrackdbl*] \textregistered ®
\textsection § \textsterling £
\textthreequartersemdash*  \textthreequarters ¾
\textthreesuperior ³ \texttildelow* ~
\texttimes × \texttrademark ™
\texttwelveudash* � \texttwosuperior ²
\textyen ¥

B.2 Symbols specific to expert fonts

When installing PostScript fonts complemented by an expert package the
text companion symbols in this list will usually be available in addition to
the ones mentioned above. Apart from the dash these glyphs cannot be faked.

\textzerooldstyle  \textoneoldstyle 
\texttwooldstyle  \textthreeoldstyle 
\textfouroldstyle  \textfiveoldstyle 
\textsixoldstyle  \textsevenoldstyle 
\texteightoldstyle  \textnineoldstyle 
\textcentoldstyle  \textcolonmonetary ₡
\textdollaroldstyle  \textthreequartersemdash 

B.3. SYMBOLS SPECIFIC TO TEX FONTS 95

B.3 Symbols specific to TeX fonts

The text companion symbols in this list mostly belong to the more exotic
parts of the TS1 encoding. They are only provided by fonts which were cre-
ated with TeX and TS1 encoding in mind, for example European Computer
Modern and Latin Modern.

\textbaht ฿ \textbigcircle ○
\textblank ␢ \textborn b
\textcircledP ℗ \textcopyleft «
\textdblhyphenchar � \textdblhyphen -
\textdied d \textdiscount �
\textdivorced c \textdong ₫
\textdownarrow ↓ \textestimated ℮
\textguarani � \textlangle 〈
\textleaf l \textleftarrow ←
\textlira ₤ \textlquill ⁅
\textmarried m \textmho ℧
\textmusicalnote ♪ \textnaira ₦
\textnumero № \textohm Ω
\textopenbullet ◦ \textpertenthousand %��
\textpeso � \textpilcrow ¶
\textquotestraightbase ‚ \textquotestraightdblbase „
\textrangle 〉 \textrecipe �
\textreferencemark ※ \textrightarrow →
\textrquill ⁆ \textservicemark ℠
\textsurd √ \textuparrow ↑
\textwon ₩

96 APPENDIX B. TEXT COMPANION SYMBOLS

Appendix C

The GNU Free Documentation
License

Version 1.2, November 2002

Copyright © 2000, 2001, 2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, ma 02111-1307 usa

C.0 Preamble

The purpose of this license is to make a manual, textbook, or other functional
and useful document ‘free’ in the sense of freedom: to assure everyone the
effective freedom to copy and redistribute it, with or without modifying it,
either commercially or noncommercially. Secondarily, this license preserves
for the author and publisher a way to get credit for their work, while not
being considered responsible for modifications made by others.

This license is a kind of ‘copyleft’, which means that derivative works of
the document must themselves be free in the same sense. It complements
the GNU General Public License, which is a copyleft license designed for free
software.

We have designed this license in order to use it for manuals for free soft-
ware, because free software needs free documentation: a free program should
come with manuals providing the same freedoms that the software does. But
this license is not limited to software manuals; it can be used for any textual
work, regardless of subject matter or whether it is published as a printed
book. We recommend this license principally for works whose purpose is in-
struction or reference.

97

98 APPENDIX C. THE GNU FREE DOCUMENTATION LICENSE

C.1 Applicability and definitions

This license applies to any manual or other work, in any medium, that con-
tains a notice placed by the copyright holder saying it can be distributed
under the terms of this license. Such a notice grants a world-wide, royalty-
free license, unlimited in duration, to use that work under the conditions
stated herein. The document, below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as you. You accept the li-
cense if you copy, modify or distribute the work in a way requiring permission
under copyright law.

A modified version of the document means any work containing the docu-
ment or a portion of it, either copied verbatim, or with modifications and/or
translated into another language.

A secondary section is a named appendix or a front-matter section of
the document that deals exclusively with the relationship of the publishers
or authors of the document to the document’s overall subject (or to related
matters) and contains nothing that could fall directly within that overall
subject. (Thus, if the document is in part a textbook of mathematics, a
secondary section may not explain any mathematics.) The relationship could
be a matter of historical connection with the subject or with related matters,
or of legal, commercial, philosophical, ethical or political position regarding
them.

The invariant sections are certain secondary sections whose titles are
designated, as being those of invariant sections, in the notice that says that
the document is released under this license. If a section does not fit the above
definition of secondary then it is not allowed to be designated as invariant.
The document may contain zero invariant sections. If the document does not
identify any invariant sections then there are none.

The cover texts are certain short passages of text that are listed, as front-
cover texts or back-cover texts, in the notice that says that the document
is released under this license. A front-cover text may be at most five words,
and a back-cover text may be at most 25 words.

A transparent copy of the document means a machine-readable copy,
represented in a format whose specification is available to the general public,
that is suitable for revising the document straightforwardly with generic text
editors or (for images composed of pixels) generic paint programs or (for
drawings) some widely available drawing editor, and that is suitable for input
to text formatters or for automatic translation to a variety of formats suitable
for input to text formatters. A copy made in an otherwise transparent file
format whose markup, or absence of markup, has been arranged to thwart or
discourage subsequent modification by readers is not transparent. An image

C.2. VERBATIM COPYING 99

format is not transparent if used for any substantial amount of text. A copy
that is not ‘transparent’ is called ‘opaque’.

Examples of suitable formats for transparent copies include plain Ascii
without markup, Texinfo input format, LaTeX input format, sgml or xml
using a publicly available dtd, and standard-conforming simple html, Post-
Script or pdf designed for human modification. Examples of transparent im-
age formats include png, xcf and jpg. Opaque formats include proprietary
formats that can be read and edited only by proprietary word processors,
sgml or xml for which the dtd and/or processing tools are not generally
available, and the machine-generated html, PostScript or pdf produced by
some word processors for output purposes only.

The title page means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this license requires
to appear in the title page. For works in formats which do not have any title
page as such, ‘title page’ means the text near the most prominent appearance
of the work’s title, preceding the beginning of the body of the text.

A section entitled xyz means a named subunit of the document whose
title either is precisely xyz or contains xyz in parentheses following text
that translates xyz in another language. (Here xyz stands for a specific
section name mentioned below, such as ‘Acknowledgements’, ‘Dedications’,
‘Endorsements’, or ‘History’.) To “preserve the title” of such a section when
you modify the document means that it remains a section “entitled xyz”
according to this definition.

The document may include warranty disclaimers next to the notice which
states that this license applies to the document. These warranty disclaimers
are considered to be included by reference in this license, but only as regards
disclaiming warranties: any other implication that these warranty disclaimers
may have is void and has no effect on the meaning of this license.

C.2 Verbatim copying

You may copy and distribute the document in any medium, either commer-
cially or noncommercially, provided that this license, the copyright notices,
and the license notice saying this license applies to the document are repro-
duced in all copies, and that you add no other conditions whatsoever to those
of this license. You may not use technical measures to obstruct or control the
reading or further copying of the copies you make or distribute. However,
you may accept compensation in exchange for copies. If you distribute a
large enough number of copies you must also follow the conditions in section
C.3.

100 APPENDIX C. THE GNU FREE DOCUMENTATION LICENSE

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

C.3 Copying in quantity

If you publish printed copies (or copies in media that commonly have printed
covers) of the document, numbering more than 100, and the document’s
license notice requires cover texts, you must enclose the copies in covers that
carry, clearly and legibly, all these cover texts: front-cover texts on the front
cover, and back-cover texts on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these copies. The front cover must
present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the document and
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly,
you should put the first ones listed (as many as fit reasonably) on the actual
cover, and continue the rest onto adjacent pages.

If you publish or distribute opaque copies of the document numbering
more than 100, you must either include a machine-readable transparent
copy along with each opaque copy, or state in or with each opaque copy
a computer-network location from which the general network-using public
has access to download using public-standard network protocols a complete
transparent copy of the document, free of added material. If you use the
latter option, you must take reasonably prudent steps, when you begin dis-
tribution of opaque copies in quantity, to ensure that this transparent copy
will remain thus accessible at the stated location until at least one year after
the last time you distribute an opaque copy (directly or through your agents
or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the
document well before redistributing any large number of copies, to give them
a chance to provide you with an updated version of the document.

C.4 Modifications

You may copy and distribute a modified version of the document under the
conditions of sections C.2 and C.3 above, provided that you release the mod-
ified version under precisely this license, with the modified version filling
the role of the document, thus licensing distribution and modification of the

C.4. MODIFICATIONS 101

modified version to whoever possesses a copy of it. In addition, you must do
these things in the modified version:

A. Use in the title page (and on the covers, if any) a title distinct from that
of the document, and from those of previous versions (which should, if
there were any, be listed in the history section of the document). You
may use the same title as a previous version if the original publisher of
that version gives permission.

B. List on the title page, as authors, one or more persons or entities re-
sponsible for authorship of the modifications in the modified version,
together with at least five of the principal authors of the document (all
of its principal authors, if it has fewer than five), unless they release
you from this requirement.

C. State on the title page the name of the publisher of the modified version,
as the publisher.

D. Preserve all the copyright notices of the document.

E. Add an appropriate copyright notice for your modifications adjacent to
the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving
the public permission to use the modified version under the terms of
this license.

G. Preserve in that license notice the full lists of invariant sections and
required cover texts given in the document’s license notice.

H. Include an unaltered copy of this license.

I. Preserve the section entitled ‘History’, preserve its title, and add to it
an item stating at least the title, year, new authors, and publisher of
the modified version as given on the title page. If there is no section
entitled ‘History’ in the document, create one stating the title, year,
authors, and publisher of the document as given on its title page, then
add an item describing the modified version as stated in the previous
sentence.

J. Preserve the network location, if any, given in the document for public
access to a transparent copy of the document, and likewise the network
locations given in the document for previous versions it was based on.
These may be placed in the ‘History’ section. You may omit a network

102 APPENDIX C. THE GNU FREE DOCUMENTATION LICENSE

location for a work that was published at least four years before the
document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section entitled ‘Acknowledgements’ or ‘Dedications’, preserve
the title of the section, and preserve in the section all the substance and
tone of each of the contributor acknowledgements and/or dedications
given therein.

L. Preserve all the invariant sections of the document, unaltered in their
text and in their titles. Section numbers or the equivalent are not con-
sidered part of the section titles.

M. Delete any section entitled ‘Endorsements’. Such a section may not be
included in the modified version.

N. Do not retitle any existing section to be entitled ‘Endorsements’ or to
conflict in title with any invariant section.

O. Preserve any warranty disclaimers.

If the modified version includes new front-matter sections or appendices that
qualify as secondary sections and contain no material copied from the doc-
ument, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of invariant sections in the
modified version’s license notice. These titles must be distinct from any other
section titles.

You may add a section entitled ‘Endorsements’, provided it contains noth-
ing but endorsements of your modified version by various parties – for ex-
ample, statements of peer review or that the text has been approved by an
organization as the authoritative definition of a standard.

You may add a passage of up to five words as a front-cover text, and a
passage of up to 25 words as a back-cover text, to the end of the list of cover
texts in the modified version. Only one passage of front-cover text and one
of back-cover text may be added by (or through arrangements made by) any
one entity. If the document already includes a cover text for the same cover,
previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old
one, on explicit permission from the previous publisher that added the old
one.

The author(s) and publisher(s) of the document do not by this license
give permission to use their names for publicity for or to assert or imply
endorsement of any modified version.

C.5. COMBINING DOCUMENTS 103

C.5 Combining documents

You may combine the document with other documents released under this
license, under the terms defined in section C.4 above for modified versions,
provided that you include in the combination all of the invariant sections
of all of the original documents, unmodified, and list them all as invariant
sections of your combined work in its license notice, and that you preserve
all their warranty disclaimers.

The combined work need only contain one copy of this license, and mul-
tiple identical invariant sections may be replaced with a single copy. If there
are multiple invariant sections with the same name but different contents,
make the title of each such section unique by adding at the end of it, in
parentheses, the name of the original author or publisher of that section if
known, or else a unique number. Make the same adjustment to the section
titles in the list of invariant sections in the license notice of the combined
work.

In the combination, you must combine any sections entitled ‘History’
in the various original documents, forming one section entitled ‘History’;
likewise combine any sections entitled ‘Acknowledgements’, and any sections
entitled ‘Dedications’. You must delete all sections entitled ‘Endorsements.’

C.6 Collections of documents

You may make a collection consisting of the document and other documents
released under this license, and replace the individual copies of this license in
the various documents with a single copy that is included in the collection,
provided that you follow the rules of this license for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute
it individually under this license, provided you insert a copy of this license
into the extracted document, and follow this license in all other respects
regarding verbatim copying of that document.

C.7 Aggregation with independent works

A compilation of the document or its derivatives with other separate and
independent documents or works, in or on a volume of a storage or distri-
bution medium, is called an ‘aggregate’ if the copyright resulting from the
compilation is not used to limit the legal rights of the compilation’s users be-
yond what the individual works permit. When the document is included in

104 APPENDIX C. THE GNU FREE DOCUMENTATION LICENSE

an aggregate, this license does not apply to the other works in the aggregate
which are not themselves derivative works of the document.

If the cover text requirement of section C.3 is applicable to these copies
of the document, then if the document is less than one half of the entire
aggregate, the document’s cover texts may be placed on covers that bracket
the document within the aggregate, or the electronic equivalent of covers if
the document is in electronic form. Otherwise they must appear on printed
covers that bracket the whole aggregate.

C.8 Translation

Translation is considered a kind of modification, so you may distribute trans-
lations of the document under the terms of section C.4. Replacing invariant
sections with translations requires special permission from their copyright
holders, but you may include translations of some or all invariant sections in
addition to the original versions of these invariant sections. You may include
a translation of this license, and all the license notices in the document, and
any warranty disclaimers, provided that you also include the original En-
glish version of this license and the original versions of those notices and
disclaimers. In case of a disagreement between the translation and the origi-
nal version of this license or a notice or disclaimer, the original version will
prevail.

If a section in the document is entitled ‘Acknowledgements’, ‘Dedications’,
or ‘History’, the requirement (section C.4) to preserve its title (section C.1)
will typically require changing the actual title.

C.9 Termination

You may not copy, modify, sublicense, or distribute the document except
as expressly provided for under this license. Any other attempt to copy,
modify, sublicense or distribute the document is void, and will automatically
terminate your rights under this license. However, parties who have received
copies, or rights, from you under this license will not have their licenses
terminated so long as such parties remain in full compliance.

C.10 Future revisions of this license

The Free Software Foundation may publish new, revised versions of the GNU
Free Documentation License from time to time. Such new versions will be

C.10. FUTURE REVISIONS OF THIS LICENSE 105

similar in spirit to the present version, but may differ in detail to address
new problems or concerns.1

Each version of the license is given a distinguishing version number. If
the document specifies that a particular numbered version of this license “or
any later version” applies to it, you have the option of following the terms
and conditions either of that specified version or of any later version that
has been published (not as a draft) by the Free Software Foundation. If the
document does not specify a version number of this license, you may choose
any version ever published (not as a draft) by the Free Software Foundation.

1http://www.gnu.org/copyleft/

http://www.gnu.org/copyleft/

106 APPENDIX C. THE GNU FREE DOCUMENTATION LICENSE

Appendix D

Revision history

2.14 2010-08-29
Original author resigned as maintainer

2.14 2004-12-05
Added appendix B
Extended section 1.2, adding note about monowidth fonts
Extended section 4.3, adding note about faked euro symbol
Extended introduction, adding section on getting further help

2.00 2004-04-18
Final release for fontinst 1.9
Completed revision process for fontinst 1.9

1.90 2004-03-14
Revised tutorial 6
Updated tutorial 7

1.80 2004-02-14
Revised tutorial 5
Updated tutorial 7

1.70 2004-01-31
Revised tutorial 4, adding section 4.4
Updated tutorial 7, adding section 7.2

1.60 2004-01-31
Revised tutorial 3
Updated tutorial 7

1.50 2004-01-25
Revised tutorial 2
Updated tutorial 7

1.40 2004-01-24
Started revision process for fontinst 1.9
Revised tutorial 1

107

108 APPENDIX D. REVISION HISTORY

Added tutorial 7
Revised appendix

1.23 2003-08-31
Updated section 1.7, adding tables 1.1 and 1.2
Updated section 1.7, adding note about Latin Modern
Revised section 1.6

1.20 2003-07-17
Updated section 4.1, adding preliminary hints for fontinst 1.9
Updated sections 3.2, 5.4, and 6.3, fixing bug in nfssext.sty
Updated section 6.3, improving swash support in nfssext.sty
Revised discussion of ornaments in section 6.5
Revised discussion of swashes in section 6.1
Added spelling corrections by William Adams
Added spelling corrections by Adrian Burd
Removed note soliciting contributions

1.10 2003-03-27
Added GNU Free Documentation License as appendix C
Added explicit licensing clause

1.00 2003-03-25
Final release for fontinst 1.8
Added tutorial 6
Updated notes on contributions

0.80 2003-03-23
Added spelling corrections and suggestions by Timothy Eyre
Revised section 1.6, splitting off section 1.7
Added section 3.3

0.68 2003-02-09
Revised section 4.2
Updated notes on contributions

0.66 2003-01-26
Added highlighting to code listings

0.65 2003-01-19
Added spelling corrections by Adrian Heathcote
Added spelling corrections by William Adams
Added section 2.2
Revised introduction

0.60 2003-01-11
Revised tutorial 3
Added discussion of kerning issues to section 3.1

0.54 2003-01-04
Revised discussion of OT1 encoding in tutorial 1

109

Added minor changes to appendix A
0.52 2003-01-02

Added table A.2 to appendix A
Revised introduction to tables in appendix A

0.50 2002-12-30
Added tutorial 5
Added appendix A featuring tables A.1, A.3, and A.4
Added revision history as appendix D

0.43 2002-10-25
First public release featuring tutorials 1–4
Added installation instructions to section 4.3

0.40 2002-08-11
Added tutorial 4

0.30 2002-05-12
Added tutorial 3

0.20 2002-04-17
Unreleased draft featuring tutorials 1 and 2

	Introduction
	The basics
	Renaming the font files
	Creating metrics and virtual fonts
	Compiling metrics and virtual fonts
	Installing fonts and support files
	Creating and installing map files
	Using the new fonts
	Computer Modern and T1 encoding

	Standard font sets
	A verbose fontinst file
	The latinfamily macro revisited

	Optical small caps and hanging figures
	The fontinst file
	An extended style file
	The fonts supplied with TeX

	The euro currency symbol
	Uncoded euro symbol
	Euro symbol encoded as currency symbol
	Euro symbol taken from symbol font
	Installing symbol fonts

	Expert font sets, regular setup
	A basic fontinst file
	A verbose fontinst file
	Inferior and superior figures
	An extended style file
	Using the features of expert fonts

	Expert font sets, extended setup
	The fontinst file
	Installing text ornaments
	Extending the user interface
	A high-level interface for ornaments
	An extended style file

	Creating map files
	The syntax of map files
	Expert and symbol fonts

	Code tables
	Text companion symbols
	Symbols in text fonts
	Symbols specific to expert fonts
	Symbols specific to TeX fonts

	The GNU Free Documentation License
	Preamble
	Applicability and definitions
	Verbatim copying
	Copying in quantity
	Modifications
	Combining documents
	Collections of documents
	Aggregation with independent works
	Translation
	Termination
	Future revisions of this license

	Revision history

